These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 24122564)

  • 21. Gold nanograin microelectrodes for neuroelectronic interfaces.
    Kim R; Hong N; Nam Y
    Biotechnol J; 2013 Feb; 8(2):206-14. PubMed ID: 23071004
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Non-invasive method for selection of electrodes and stimulus parameters for FES applications with intrafascicular arrays.
    Dowden BR; Frankel MA; Normann RA; Clark GA
    J Neural Eng; 2012 Feb; 9(1):016006. PubMed ID: 22173566
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effective electrode configuration for selective stimulation with inner eye prostheses.
    Rattay F; Resatz S
    IEEE Trans Biomed Eng; 2004 Sep; 51(9):1659-64. PubMed ID: 15376514
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design, in vitro and in vivo assessment of a multi-channel sieve electrode with integrated multiplexer.
    Ramachandran A; Schuettler M; Lago N; Doerge T; Koch KP; Navarro X; Hoffmann KP; Stieglitz T
    J Neural Eng; 2006 Jun; 3(2):114-24. PubMed ID: 16705267
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrode modifications to lower electrode impedance and improve neural signal recording sensitivity.
    Chung T; Wang JQ; Wang J; Cao B; Li Y; Pang SW
    J Neural Eng; 2015 Oct; 12(5):056018. PubMed ID: 26394650
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Band-tunable and multiplexed integrated circuits for simultaneous recording and stimulation with microelectrode arrays.
    Olsson RH; Buhl DL; Sirota AM; Buzsaki G; Wise KD
    IEEE Trans Biomed Eng; 2005 Jul; 52(7):1303-11. PubMed ID: 16041994
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex.
    Vetter RJ; Williams JC; Hetke JF; Nunamaker EA; Kipke DR
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):896-904. PubMed ID: 15188856
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A wireless implantable multichannel microstimulating system-on-a-chip with modular architecture.
    Ghovanloo M; Najafi K
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):449-57. PubMed ID: 17894278
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Focalizing electrical neural stimulation with penetrating microelectrode arrays: a modeling study.
    Joucla S; Rousseau L; Yvert B
    J Neurosci Methods; 2012 Jul; 209(1):250-4. PubMed ID: 22677176
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comprehensive chronic laminar single-unit, multi-unit, and local field potential recording performance with planar single shank electrode arrays.
    Kozai TD; Du Z; Gugel ZV; Smith MA; Chase SM; Bodily LM; Caparosa EM; Friedlander RM; Cui XT
    J Neurosci Methods; 2015 Mar; 242():15-40. PubMed ID: 25542351
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An active, flexible carbon nanotube microelectrode array for recording electrocorticograms.
    Chen YC; Hsu HL; Lee YT; Su HC; Yen SJ; Chen CH; Hsu WL; Yew TR; Yeh SR; Yao DJ; Chang YC; Chen H
    J Neural Eng; 2011 Jun; 8(3):034001. PubMed ID: 21474876
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biocompatible benzocyclobutene (BCB)-based neural implants with micro-fluidic channel.
    Lee K; He J; Clement R; Massia S; Kim B
    Biosens Bioelectron; 2004 Sep; 20(2):404-7. PubMed ID: 15308247
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrananocrystalline diamond-CMOS device integration route for high acuity retinal prostheses.
    Ahnood A; Escudie MC; Cicione R; Abeyrathne CD; Ganesan K; Fox KE; Garrett DJ; Stacey A; Apollo NV; Lichter SG; Thomas CD; Tran N; Meffin H; Prawer S
    Biomed Microdevices; 2015; 17(3):9952. PubMed ID: 25877379
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Implantable flexible electrodes for functional electrical stimulation.
    Schneider A; Stieglitz T
    Med Device Technol; 2004; 15(1):16-8. PubMed ID: 14994633
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Response profiles of murine spiral ganglion neurons on multi-electrode arrays.
    Hahnewald S; Tscherter A; Marconi E; Streit J; Widmer HR; Garnham C; Benav H; Mueller M; Löwenheim H; Roccio M; Senn P
    J Neural Eng; 2016 Feb; 13(1):016011. PubMed ID: 26656212
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An automated system for rapid evaluation of high-density electrode arrays in neural prostheses.
    John SE; Shivdasani MN; Leuenberger J; Fallon JB; Shepherd RK; Millard RE; Rathbone GD; Williams CE
    J Neural Eng; 2011 Jun; 8(3):036011. PubMed ID: 21493979
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Polytrodes: high-density silicon electrode arrays for large-scale multiunit recording.
    Blanche TJ; Spacek MA; Hetke JF; Swindale NV
    J Neurophysiol; 2005 May; 93(5):2987-3000. PubMed ID: 15548620
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrochemical layer-by-layer approach to fabricate mechanically stable platinum black microelectrodes using a mussel-inspired polydopamine adhesive.
    Kim R; Nam Y
    J Neural Eng; 2015 Apr; 12(2):026010. PubMed ID: 25738544
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface-modified microelectrode array with flake nanostructure for neural recording and stimulation.
    Kim JH; Kang G; Nam Y; Choi YK
    Nanotechnology; 2010 Feb; 21(8):85303. PubMed ID: 20101076
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design and fabrication of a polyimide-based microelectrode array: application in neural recording and repeatable electrolytic lesion in rat brain.
    Chen YY; Lai HY; Lin SH; Cho CW; Chao WH; Liao CH; Tsang S; Chen YF; Lin SY
    J Neurosci Methods; 2009 Aug; 182(1):6-16. PubMed ID: 19467262
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.