These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 24122572)

  • 1. Validation of a method for real time foot position and orientation tracking with Microsoft Kinect technology for use in virtual reality and treadmill based gait training programs.
    Paolini G; Peruzzi A; Mirelman A; Cereatti A; Gaukrodger S; Hausdorff JM; Della Croce U
    IEEE Trans Neural Syst Rehabil Eng; 2014 Sep; 22(5):997-1002. PubMed ID: 24122572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical Evaluation of Virtual Reality-based Turning on a Self-Paced Linear Treadmill.
    Oh K; Stanley CJ; Damiano DL; Kim J; Yoon J; Park HS
    Gait Posture; 2018 Sep; 65():157-162. PubMed ID: 30510358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validity of the Microsoft Kinect for providing lateral trunk lean feedback during gait retraining.
    Clark RA; Pua YH; Bryant AL; Hunt MA
    Gait Posture; 2013 Sep; 38(4):1064-6. PubMed ID: 23643880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constructing a Pedotti diagram using excel charts.
    Kambhampati SB
    J Biomech; 2007; 40(16):3748-50. PubMed ID: 17645882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gait training with virtual reality-based real-time feedback: improving gait performance following transfemoral amputation.
    Darter BJ; Wilken JM
    Phys Ther; 2011 Sep; 91(9):1385-94. PubMed ID: 21757579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Full-body motion assessment: Concurrent validation of two body tracking depth sensors versus a gold standard system during gait.
    Vilas-Boas MDC; Choupina HMP; Rocha AP; Fernandes JM; Cunha JPS
    J Biomech; 2019 Apr; 87():189-196. PubMed ID: 30914189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time tracking of laparoscopic instruments using kinect for training in virtual reality.
    Owlia M; Khabbazan M; Mirbagheri MM; Mirbagheri A
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3945-3948. PubMed ID: 28269148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical experience using a 5-week treadmill training program with virtual reality to enhance gait in an ambulatory physical therapy service.
    Shema SR; Brozgol M; Dorfman M; Maidan I; Sharaby-Yeshayahu L; Malik-Kozuch H; Wachsler Yannai O; Giladi N; Hausdorff JM; Mirelman A
    Phys Ther; 2014 Sep; 94(9):1319-26. PubMed ID: 24786944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A study of the viability of obtaining a generic animation of the foot while walking for the virtual testing of footwear using dorsal pressures.
    Rupérez MJ; Alemany S; Monserrat C; Olaso J; Alcañíz M; González JC
    J Biomech; 2009 Sep; 42(13):2040-6. PubMed ID: 19679310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation and visualization of sagittal kinematics of lower limbs orientation using body-fixed sensors.
    Dejnabadi H; Jolles BM; Casanova E; Fua P; Aminian K
    IEEE Trans Biomed Eng; 2006 Jul; 53(7):1385-93. PubMed ID: 16830942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting timing of foot strike during running, independent of striking technique, using principal component analysis of joint angles.
    Osis ST; Hettinga BA; Leitch J; Ferber R
    J Biomech; 2014 Aug; 47(11):2786-9. PubMed ID: 25011620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The validity of the first and second generation Microsoft Kinect™ for identifying joint center locations during static postures.
    Xu X; McGorry RW
    Appl Ergon; 2015 Jul; 49():47-54. PubMed ID: 25766422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the Pose Tracking Performance of the Azure Kinect and Kinect v2 for Gait Analysis in Comparison with a Gold Standard: A Pilot Study.
    Albert JA; Owolabi V; Gebel A; Brahms CM; Granacher U; Arnrich B
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32911651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of a foot gymnastic exercise programme on gait performance in older adults: a randomised controlled trial.
    Hartmann A; Murer K; de Bie RA; de Bruin ED
    Disabil Rehabil; 2009; 31(25):2101-10. PubMed ID: 19888840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A low cost real-time motion tracking approach using webcam technology.
    Krishnan C; Washabaugh EP; Seetharaman Y
    J Biomech; 2015 Feb; 48(3):544-8. PubMed ID: 25555306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Virtual reality for enhancement of robot-assisted gait training in children with central gait disorders.
    Brütsch K; Koenig A; Zimmerli L; Mérillat-Koeneke S; Riener R; Jäncke L; van Hedel HJ; Meyer-Heim A
    J Rehabil Med; 2011 May; 43(6):493-9. PubMed ID: 21491072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increasing patient engagement during virtual reality-based motor rehabilitation.
    Zimmerli L; Jacky M; Lünenburger L; Riener R; Bolliger M
    Arch Phys Med Rehabil; 2013 Sep; 94(9):1737-46. PubMed ID: 23500181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrated approach to endoscopic instrument tracking for augmented reality applications in surgical simulation training.
    Loukas C; Lahanas V; Georgiou E
    Int J Med Robot; 2013 Dec; 9(4):e34-51. PubMed ID: 23355307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative abilities of Microsoft Kinect and Vicon 3D motion capture for gait analysis.
    Pfister A; West AM; Bronner S; Noah JA
    J Med Eng Technol; 2014 Jul; 38(5):274-80. PubMed ID: 24878252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Training software using virtual-reality technology and pre-calculated effective dose data.
    Ding A; Zhang D; Xu XG
    Health Phys; 2009 May; 96(5):594-601. PubMed ID: 19359853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.