These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 24122573)

  • 1. Multi-muscle FES force control of the human arm for arbitrary goals.
    Schearer EM; Liao YW; Perreault EJ; Tresch MC; Memberg WD; Kirsch RF; Lynch KM
    IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):654-63. PubMed ID: 24122573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting functional force production capabilities of upper extremity functional electrical stimulation neuroprostheses: a proof of concept study.
    Schearer EM; Wolf DN
    J Neural Eng; 2020 Feb; 17(1):016051. PubMed ID: 31910397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of a time-delayed 5 degrees of freedom arm model for use in upper extremity functional electrical stimulation.
    Cooman P; Kirsch RF
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():322-4. PubMed ID: 23365895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive neuron-to-EMG decoder training for FES neuroprostheses.
    Ethier C; Acuna D; Solla SA; Miller LE
    J Neural Eng; 2016 Aug; 13(4):046009. PubMed ID: 27247280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EMG-based control for a C5/C6 spinal cord injury upper extremity neuroprosthesis.
    Hincapie JG; Kirsch RF
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2432-5. PubMed ID: 18002485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feedback Control of Functional Electrical Stimulation for 2-D Arm Reaching Movements.
    Sharif Razavian R; Ghannadi B; Mehrabi N; Charlet M; McPhee J
    IEEE Trans Neural Syst Rehabil Eng; 2018 Oct; 26(10):2033-2043. PubMed ID: 29994402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A musculoskeletal model of the upper extremity for use in the development of neuroprosthetic systems.
    Blana D; Hincapie JG; Chadwick EK; Kirsch RF
    J Biomech; 2008; 41(8):1714-21. PubMed ID: 18420213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional restoration of elbow extension after spinal-cord injury using a neural network-based synergistic FES controller.
    Giuffrida JP; Crago PE
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):147-52. PubMed ID: 16003892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined feedforward and feedback control of a redundant, nonlinear, dynamic musculoskeletal system.
    Blana D; Kirsch RF; Chadwick EK
    Med Biol Eng Comput; 2009 May; 47(5):533-42. PubMed ID: 19343388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FES control of isometric forces in the rat hindlimb using many muscles.
    Jarc AM; Berniker M; Tresch MC
    IEEE Trans Biomed Eng; 2013 May; 60(5):1422-30. PubMed ID: 23303688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reducing muscle fatigue due to functional electrical stimulation using random modulation of stimulation parameters.
    Thrasher A; Graham GM; Popovic MR
    Artif Organs; 2005 Jun; 29(6):453-8. PubMed ID: 15926981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feasibility of EMG-based neural network controller for an upper extremity neuroprosthesis.
    Hincapie JG; Kirsch RF
    IEEE Trans Neural Syst Rehabil Eng; 2009 Feb; 17(1):80-90. PubMed ID: 19211327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple-input single-output closed-loop isometric force control using asynchronous intrafascicular multi-electrode stimulation.
    Frankel MA; Dowden BR; Mathews VJ; Normann RA; Clark GA; Meek SG
    IEEE Trans Neural Syst Rehabil Eng; 2011 Jun; 19(3):325-32. PubMed ID: 21385670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling open-loop stability of a human arm driven by a functional electrical stimulation neuroprosthesis.
    Liao YW; Schearer EM; Hu X; Perreault EJ; Tresch MC; Lynch KM
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3598-601. PubMed ID: 24110508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated optimal coordination of multiple-DOF neuromuscular actions in feedforward neuroprostheses.
    Lujan JL; Crago PE
    IEEE Trans Biomed Eng; 2009 Jan; 56(1):179-87. PubMed ID: 19224731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Holding Static Arm Configurations With Functional Electrical Stimulation: A Case Study.
    Wolf DN; Schearer EM
    IEEE Trans Neural Syst Rehabil Eng; 2018 Oct; 26(10):2044-2052. PubMed ID: 30130233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model-based control of FES-induced single joint movements.
    Ferrarin M; Palazzo F; Riener R; Quintern J
    IEEE Trans Neural Syst Rehabil Eng; 2001 Sep; 9(3):245-57. PubMed ID: 11561660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting muscle forces of individuals with hemiparesis following stroke.
    Kesar TM; Ding J; Wexler AS; Perumal R; Maladen R; Binder-Macleod SA
    J Neuroeng Rehabil; 2008 Feb; 5():7. PubMed ID: 18304360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implanted functional electrical stimulation hand system in adolescents with spinal injuries: an evaluation.
    Mulcahey MJ; Betz RR; Smith BT; Weiss AA; Davis SE
    Arch Phys Med Rehabil; 1997 Jun; 78(6):597-607. PubMed ID: 9196467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of optimal electrical stimulation patterns for functional motion restoration: applied to spinal cord-injured patients.
    Benoussaad M; Poignet P; Hayashibe M; Azevedo-Coste C; Fattal C; Guiraud D
    Med Biol Eng Comput; 2015 Mar; 53(3):227-40. PubMed ID: 25430421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.