BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 24122702)

  • 1. Characterization of the hypothalamus of Xenopus laevis during development. II. The basal regions.
    Domínguez L; González A; Moreno N
    J Comp Neurol; 2014 Apr; 522(5):1102-31. PubMed ID: 24122702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the hypothalamus of Xenopus laevis during development. I. The alar regions.
    Domínguez L; Morona R; González A; Moreno N
    J Comp Neurol; 2013 Mar; 521(4):725-59. PubMed ID: 22965483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subdivisions of the turtle Pseudemys scripta hypothalamus based on the expression of regulatory genes and neuronal markers.
    Moreno N; Domínguez L; Morona R; González A
    J Comp Neurol; 2012 Feb; 520(3):453-78. PubMed ID: 21935937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patterns of hypothalamic regionalization in amphibians and reptiles: common traits revealed by a genoarchitectonic approach.
    Domínguez L; González A; Moreno N
    Front Neuroanat; 2015; 9():3. PubMed ID: 25691860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ontogenetic distribution of the transcription factor nkx2.2 in the developing forebrain of Xenopus laevis.
    Domínguez L; González A; Moreno N
    Front Neuroanat; 2011; 5():11. PubMed ID: 21415915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the bed nucleus of the stria terminalis in the forebrain of anuran amphibians.
    Moreno N; Morona R; López JM; Domínguez L; Joven A; Bandín S; González A
    J Comp Neurol; 2012 Feb; 520(2):330-63. PubMed ID: 21674496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sonic hedgehog expression during Xenopus laevis forebrain development.
    Domínguez L; González A; Moreno N
    Brain Res; 2010 Aug; 1347():19-32. PubMed ID: 20540934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of the vomeronasal amygdala in anuran amphibians: hodological, neurochemical, and gene expression characterization.
    Moreno N; González A
    J Comp Neurol; 2007 Aug; 503(6):815-31. PubMed ID: 17570503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of Islet-1, Nkx2.1, Pax6, and Orthopedia in the forebrain of the sturgeon Acipenser ruthenus identifies conserved prosomeric characteristics.
    López JM; Jiménez S; Morona R; Lozano D; Moreno N
    J Comp Neurol; 2022 Apr; 530(5):834-855. PubMed ID: 34547112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular characterization of prosomeric and intraprosomeric subdivisions of the embryonic zebrafish diencephalon.
    Lauter G; Söll I; Hauptmann G
    J Comp Neurol; 2013 Apr; 521(5):1093-118. PubMed ID: 22949352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative functional analysis provides evidence for a crucial role for the homeobox gene Nkx2.1/Titf-1 in forebrain evolution.
    van den Akker WM; Brox A; Puelles L; Durston AJ; Medina L
    J Comp Neurol; 2008 Jan; 506(2):211-23. PubMed ID: 18022953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The distribution of Dlx1-2 and glutamic acid decarboxylase in the embryonic and adult hypothalamus reveals three differentiated LHA subdivisions in rodents.
    Barbier M; Croizier S; Alvarez-Bolado G; Risold PY
    J Chem Neuroanat; 2022 Apr; 121():102089. PubMed ID: 35283254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localization and connectivity of the lateral amygdala in anuran amphibians.
    Moreno N; González A
    J Comp Neurol; 2004 Nov; 479(2):130-48. PubMed ID: 15452828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Islet1 as a marker of subdivisions and cell types in the developing forebrain of Xenopus.
    Moreno N; Domínguez L; Rétaux S; González A
    Neuroscience; 2008 Jul; 154(4):1423-39. PubMed ID: 18515014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conserved pattern of OTP-positive cells in the paraventricular nucleus and other hypothalamic sites of tetrapods.
    Bardet SM; Martinez-de-la-Torre M; Northcutt RG; Rubenstein JL; Puelles L
    Brain Res Bull; 2008 Mar; 75(2-4):231-5. PubMed ID: 18331876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early mammillary pouch specification in the course of prechordal ventralization of the forebrain tegmentum.
    García-Calero E; Fernández-Garre P; Martínez S; Puelles L
    Dev Biol; 2008 Aug; 320(2):366-77. PubMed ID: 18597750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Embryonic genoarchitecture of the pretectum in Xenopus laevis: a conserved pattern in tetrapods.
    Morona R; Ferran JL; Puelles L; González A
    J Comp Neurol; 2011 Apr; 519(6):1024-50. PubMed ID: 21344401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pattern of calbindin-D28k and calretinin immunoreactivity in the brain of Xenopus laevis during embryonic and larval development.
    Morona R; González A
    J Comp Neurol; 2013 Jan; 521(1):79-108. PubMed ID: 22678695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hodological characterization of the medial amygdala in anuran amphibians.
    Moreno N; González A
    J Comp Neurol; 2003 Nov; 466(3):389-408. PubMed ID: 14556296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prepatterning and patterning of the thalamus along embryonic development of Xenopus laevis.
    Bandín S; Morona R; González A
    Front Neuroanat; 2015; 9():107. PubMed ID: 26321920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.