These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 24122880)
1. Differences between easy- and difficult-to-mill chickpea (Cicer arietinum L.) genotypes. Part III: free sugar and non-starch polysaccharide composition. Wood JA; Knights EJ; Campbell GM; Choct M J Sci Food Agric; 2014 May; 94(7):1454-62. PubMed ID: 24122880 [TBL] [Abstract][Full Text] [Related]
2. Differences between easy- and difficult-to-mill chickpea (Cicer arietinum L.) genotypes. Part I: broad chemical composition. Wood JA; Knights EJ; Campbell GM; Choct M J Sci Food Agric; 2014 May; 94(7):1437-45. PubMed ID: 24122733 [TBL] [Abstract][Full Text] [Related]
3. Differences between easy- and difficult-to-mill chickpea (Cicer arietinum L.) genotypes. Part II: protein, lipid and mineral composition. Wood JA; Knights EJ; Campbell GM; Choct M J Sci Food Agric; 2014 May; 94(7):1446-53. PubMed ID: 24122721 [TBL] [Abstract][Full Text] [Related]
4. Enzyme pre-milling treatments improved milling performance of chickpeas by targeting mechanisms of seed coat and cotyledon adhesion with various effects on dhal quality. Wood JA; Knights EJ; Campbell GM; Harden S; Choct M J Sci Food Agric; 2022 Jan; 102(1):62-72. PubMed ID: 34031883 [TBL] [Abstract][Full Text] [Related]
5. Genetic and environmental factors contribute to variation in cell wall composition in mature desi chickpea (Cicer arietinum L.) cotyledons. Wood JA; Tan HT; Collins HM; Yap K; Khor SF; Lim WL; Xing X; Bulone V; Burton RA; Fincher GB; Tucker MR Plant Cell Environ; 2018 Sep; 41(9):2195-2208. PubMed ID: 29532951 [TBL] [Abstract][Full Text] [Related]
6. Distribution of nutrients and antinutrients in milled fractions of chickpea and horse gram: seed coat phenolics and their distinct modes of enzyme inhibition. Sreerama YN; Neelam DA; Sashikala VB; Pratape VM J Agric Food Chem; 2010 Apr; 58(7):4322-30. PubMed ID: 20307081 [TBL] [Abstract][Full Text] [Related]
8. Genotype and growing environment interaction shows a positive correlation between substrates of raffinose family oligosaccharides (RFO) biosynthesis and their accumulation in chickpea ( Cicer arietinum L.) seeds. Gangola MP; Khedikar YP; Gaur PM; Båga M; Chibbar RN J Agric Food Chem; 2013 May; 61(20):4943-52. PubMed ID: 23621405 [TBL] [Abstract][Full Text] [Related]
9. Inheritance of natural seed-coat cracking in chickpea. Gaur PM; Srinivasan S; Suresh K; Deepika SR; Rao BV J Hered; 2012; 103(6):898-902. PubMed ID: 23077231 [TBL] [Abstract][Full Text] [Related]
10. Major genes with additive effects for seed size in kabuli chickpea (Cicer arietinum L.). Upadhyaya HD; Sharma S; Gowda CL J Genet; 2011 Dec; 90(3):479-82. PubMed ID: 22227936 [No Abstract] [Full Text] [Related]
11. Physico-chemical characteristics, water absorption, soaking and cooking properties of some Sicilian populations of chickpea (Cicer arietinum L.). Patanè C; Iacoponi E; Raccuia SA Int J Food Sci Nutr; 2004 Nov; 55(7):547-54. PubMed ID: 16019298 [TBL] [Abstract][Full Text] [Related]
12. Valorization of traditional foods: nutritional and bioactive properties of Cicer arietinum L. and Lathyrus sativus L. pulses. Sarmento A; Barros L; Fernandes Â; Carvalho AM; Ferreira IC J Sci Food Agric; 2015 Jan; 95(1):179-85. PubMed ID: 24752412 [TBL] [Abstract][Full Text] [Related]
13. Nutritional quality and health benefits of chickpea (Cicer arietinum L.): a review. Jukanti AK; Gaur PM; Gowda CL; Chibbar RN Br J Nutr; 2012 Aug; 108 Suppl 1():S11-26. PubMed ID: 22916806 [TBL] [Abstract][Full Text] [Related]
14. Potential impact of rising atmospheric CO2 on quality of grains in chickpea (Cicer arietinum L.). Saha S; Chakraborty D; Sehgal VK; Pal M Food Chem; 2015 Nov; 187():431-6. PubMed ID: 25977047 [TBL] [Abstract][Full Text] [Related]
15. Galactinol synthase enzyme activity influences raffinose family oligosaccharides (RFO) accumulation in developing chickpea (Cicer arietinum L.) seeds. Gangola MP; Jaiswal S; Kannan U; Gaur PM; Båga M; Chibbar RN Phytochemistry; 2016 May; 125():88-98. PubMed ID: 26953100 [TBL] [Abstract][Full Text] [Related]
16. In vitro fermentability and antioxidant capacity of the indigestible fraction of cooked black beans (Phaseolus vulgaris L.), lentils (Lens culinaris L.) and chickpeas (Cicer arietinum L.). Hernández-Salazar M; Osorio-Diaz P; Loarca-Piña G; Reynoso-Camacho R; Tovar J; Bello-Pérez LA J Sci Food Agric; 2010 Jul; 90(9):1417-22. PubMed ID: 20549791 [TBL] [Abstract][Full Text] [Related]
17. Changes due to cooking and sterilization in low molecular weight carbohydrates in immature seeds of five cultivars of common bean. Słupski J; Gębczyński P Int J Food Sci Nutr; 2014 Jun; 65(4):419-25. PubMed ID: 24392956 [TBL] [Abstract][Full Text] [Related]
18. Genetic diversity and association mapping of iron and zinc concentrations in chickpea (Cicer arietinum L.). Diapari M; Sindhu A; Bett K; Deokar A; Warkentin TD; Tar'an B Genome; 2014 Aug; 57(8):459-68. PubMed ID: 25434748 [TBL] [Abstract][Full Text] [Related]
19. Enzymatic changes in pectic polysaccharides related to the beneficial effect of soaking on bean cooking time. Martínez-Manrique E; Jacinto-Hernández C; Garza-García R; Campos A; Moreno E; Bernal-Lugo I J Sci Food Agric; 2011 Oct; 91(13):2394-8. PubMed ID: 21604279 [TBL] [Abstract][Full Text] [Related]
20. Variability in the distribution of phenolic compounds in milled fractions of chickpea and horse gram: evaluation of their antioxidant properties. Sreerama YN; Sashikala VB; Pratape VM J Agric Food Chem; 2010 Jul; 58(14):8322-30. PubMed ID: 20593828 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]