These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 24122943)
1. On the estimation of the reproduction number based on misreported epidemic data. Azmon A; Faes C; Hens N Stat Med; 2014 Mar; 33(7):1176-92. PubMed ID: 24122943 [TBL] [Abstract][Full Text] [Related]
2. An approximate Bayesian approach for estimation of the instantaneous reproduction number under misreported epidemic data. Gressani O; Faes C; Hens N Biom J; 2023 Aug; 65(6):e2200024. PubMed ID: 36639234 [TBL] [Abstract][Full Text] [Related]
3. Modelling under-reporting in epidemics. Gamado KM; Streftaris G; Zachary S J Math Biol; 2014 Sep; 69(3):737-65. PubMed ID: 23942791 [TBL] [Abstract][Full Text] [Related]
4. Improved estimation of time-varying reproduction numbers at low case incidence and between epidemic waves. Parag KV PLoS Comput Biol; 2021 Sep; 17(9):e1009347. PubMed ID: 34492011 [TBL] [Abstract][Full Text] [Related]
5. Bayesian model choice for epidemic models with two levels of mixing. Knock ES; O'Neill PD Biostatistics; 2014 Jan; 15(1):46-59. PubMed ID: 23887980 [TBL] [Abstract][Full Text] [Related]
6. Bayesian estimation of the effective reproduction number for pandemic influenza A H1N1 in Guangdong Province, China. Yang F; Yuan L; Tan X; Huang C; Feng J Ann Epidemiol; 2013 Jun; 23(6):301-6. PubMed ID: 23683708 [TBL] [Abstract][Full Text] [Related]
7. Capturing the time-varying drivers of an epidemic using stochastic dynamical systems. Dureau J; Kalogeropoulos K; Baguelin M Biostatistics; 2013 Jul; 14(3):541-55. PubMed ID: 23292757 [TBL] [Abstract][Full Text] [Related]
8. Supervised learning and prediction of spatial epidemics. Pokharel G; Deardon R Spat Spatiotemporal Epidemiol; 2014 Oct; 11():59-77. PubMed ID: 25457597 [TBL] [Abstract][Full Text] [Related]
9. Non-exponential tolerance to infection in epidemic systems--modeling, inference, and assessment. Streftaris G; Gibson GJ Biostatistics; 2012 Sep; 13(4):580-93. PubMed ID: 22522236 [TBL] [Abstract][Full Text] [Related]
10. Epidemic modelling: aspects where stochasticity matters. Britton T; Lindenstrand D Math Biosci; 2009 Dec; 222(2):109-16. PubMed ID: 19837097 [TBL] [Abstract][Full Text] [Related]
11. Estimation of force of infection based on different epidemiological proxies: 2009/2010 Influenza epidemic in Malta. Marmara V; Cook A; Kleczkowski A Epidemics; 2014 Dec; 9():52-61. PubMed ID: 25480134 [TBL] [Abstract][Full Text] [Related]
12. Bayesian hierarchical Poisson models with a hidden Markov structure for the detection of influenza epidemic outbreaks. Conesa D; Martínez-Beneito MA; Amorós R; López-Quílez A Stat Methods Med Res; 2015 Apr; 24(2):206-23. PubMed ID: 21873301 [TBL] [Abstract][Full Text] [Related]
13. Inference for discretely observed stochastic kinetic networks with applications to epidemic modeling. Choi B; Rempala GA Biostatistics; 2012 Jan; 13(1):153-65. PubMed ID: 21835814 [TBL] [Abstract][Full Text] [Related]
14. Joint estimation of the basic reproduction number and generation time parameters for infectious disease outbreaks. Griffin JT; Garske T; Ghani AC; Clarke PS Biostatistics; 2011 Apr; 12(2):303-12. PubMed ID: 20858771 [TBL] [Abstract][Full Text] [Related]
15. Hierarchical statistical modelling of influenza epidemic dynamics in space and time. Mugglin AS; Cressie N; Gemmell I Stat Med; 2002 Sep; 21(18):2703-21. PubMed ID: 12228886 [TBL] [Abstract][Full Text] [Related]
16. Effective reproduction numbers are commonly overestimated early in a disease outbreak. Mercer GN; Glass K; Becker NG Stat Med; 2011 Apr; 30(9):984-94. PubMed ID: 21284013 [TBL] [Abstract][Full Text] [Related]
17. Bayesian Markov switching models for the early detection of influenza epidemics. Martínez-Beneito MA; Conesa D; López-Quílez A; López-Maside A Stat Med; 2008 Sep; 27(22):4455-68. PubMed ID: 18618414 [TBL] [Abstract][Full Text] [Related]
18. A Bayesian MCMC approach to study transmission of influenza: application to household longitudinal data. Cauchemez S; Carrat F; Viboud C; Valleron AJ; Boëlle PY Stat Med; 2004 Nov; 23(22):3469-87. PubMed ID: 15505892 [TBL] [Abstract][Full Text] [Related]
19. Approximate Bayesian algorithm to estimate the basic reproduction number in an influenza pandemic using arrival times of imported cases. Chong KC; Zee BCY; Wang MH Travel Med Infect Dis; 2018; 23():80-86. PubMed ID: 29653203 [TBL] [Abstract][Full Text] [Related]
20. Application of the Bayesian dynamic survival model in medicine. He J; McGee DL; Niu X Stat Med; 2010 Feb; 29(3):347-60. PubMed ID: 20014356 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]