BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 24123303)

  • 1. Highly hydrogenated graphene through microwave exfoliation of graphite oxide in hydrogen plasma: towards electrochemical applications.
    Eng AY; Sofer Z; Šimek P; Kosina J; Pumera M
    Chemistry; 2013 Nov; 19(46):15583-92. PubMed ID: 24123303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Searching for magnetism in hydrogenated graphene: using highly hydrogenated graphene prepared via Birch reduction of graphite oxides.
    Eng AY; Poh HL; Šaněk F; Maryško M; Matějková S; Sofer Z; Pumera M
    ACS Nano; 2013 Jul; 7(7):5930-9. PubMed ID: 23777325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphenes prepared by Staudenmaier, Hofmann and Hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties.
    Poh HL; Šaněk F; Ambrosi A; Zhao G; Sofer Z; Pumera M
    Nanoscale; 2012 Jun; 4(11):3515-22. PubMed ID: 22535381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sulfur-doped graphene via thermal exfoliation of graphite oxide in H2S, SO2, or CS2 gas.
    Poh HL; Šimek P; Sofer Z; Pumera M
    ACS Nano; 2013 Jun; 7(6):5262-72. PubMed ID: 23656223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unusual inherent electrochemistry of graphene oxides prepared using permanganate oxidants.
    Eng AY; Ambrosi A; Chua CK; Saněk F; Sofer Z; Pumera M
    Chemistry; 2013 Sep; 19(38):12673-83. PubMed ID: 23934966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards graphene bromide: bromination of graphite oxide.
    Jankovský O; Šimek P; Klimová K; Sedmidubský D; Matějková S; Pumera M; Sofer Z
    Nanoscale; 2014 Jun; 6(11):6065-74. PubMed ID: 24781432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly hydrogenated graphene via active hydrogen reduction of graphene oxide in the aqueous phase at room temperature.
    Sofer Z; Jankovský O; Šimek P; Soferová L; Sedmidubský D; Pumera M
    Nanoscale; 2014 Feb; 6(4):2153-60. PubMed ID: 24366534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogenated Graphenes by Birch Reduction: Influence of Electron and Proton Sources on Hydrogenation Efficiency, Magnetism, and Electrochemistry.
    Eng AY; Sofer Z; Huber Š; Bouša D; Maryško M; Pumera M
    Chemistry; 2015 Nov; 21(47):16828-38. PubMed ID: 26457373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-pressure hydrogenation of graphene: towards graphane.
    Poh HL; Šaněk F; Sofer Z; Pumera M
    Nanoscale; 2012 Nov; 4(22):7006-11. PubMed ID: 23041800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transition metal-depleted graphenes for electrochemical applications via reduction of CO₂ by lithium.
    Poh HL; Sofer Z; Luxa J; Pumera M
    Small; 2014 Apr; 10(8):1529-35. PubMed ID: 24344051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemistry at chemically modified graphenes.
    Ambrosi A; Bonanni A; Sofer Z; Cross JS; Pumera M
    Chemistry; 2011 Sep; 17(38):10763-70. PubMed ID: 21837720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microwave Exfoliation of Graphite Oxides in H
    Wong CH; Sofer Z; Klímová K; Pumera M
    ACS Appl Mater Interfaces; 2016 Nov; 8(46):31849-31855. PubMed ID: 27933971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards graphene iodide: iodination of graphite oxide.
    Šimek P; Klímová K; Sedmidubský D; Jankovský O; Pumera M; Sofer Z
    Nanoscale; 2015 Jan; 7(1):261-70. PubMed ID: 25407247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermally reduced graphenes exhibiting a close relationship to amorphous carbon.
    Wong CH; Ambrosi A; Pumera M
    Nanoscale; 2012 Aug; 4(16):4972-7. PubMed ID: 22760743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphite oxides: effects of permanganate and chlorate oxidants on the oxygen composition.
    Chua CK; Sofer Z; Pumera M
    Chemistry; 2012 Oct; 18(42):13453-9. PubMed ID: 22961662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemistry of Q-graphene.
    Randviir EP; Brownson DA; Gómez-Mingot M; Kampouris DK; Iniesta J; Banks CE
    Nanoscale; 2012 Oct; 4(20):6470-80. PubMed ID: 22961209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uranium- and thorium-doped graphene for efficient oxygen and hydrogen peroxide reduction.
    Sofer Z; Jankovský O; Šimek P; Klímová K; Macková A; Pumera M
    ACS Nano; 2014 Jul; 8(7):7106-14. PubMed ID: 24979344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inherent electrochemistry and activation of chemically modified graphenes for electrochemical applications.
    Moo JG; Ambrosi A; Bonanni A; Pumera M
    Chem Asian J; 2012 Apr; 7(4):759-70. PubMed ID: 22298372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silicon nanowire arrays-induced graphene oxide reduction under UV irradiation.
    Fellahi O; Das MR; Coffinier Y; Szunerits S; Hadjersi T; Maamache M; Boukherroub R
    Nanoscale; 2011 Nov; 3(11):4662-9. PubMed ID: 21960142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of parent graphite particle size on the electrochemistry of thermally reduced graphene oxide.
    Chee SY; Poh HL; Chua CK; Šaněk F; Sofer Z; Pumera M
    Phys Chem Chem Phys; 2012 Oct; 14(37):12794-9. PubMed ID: 22874853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.