BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 24123510)

  • 1. A new chiral binaphthalene-based fluorescence polymer sensor for the highly enantioselective recognition of phenylalaninol.
    Wei G; Zhang S; Dai C; Quan Y; Cheng Y; Zhu C
    Chemistry; 2013 Nov; 19(47):16066-71. PubMed ID: 24123510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Salen-based chiral fluorescence polymer sensor for enantioselective recognition of α-hydroxyl carboxylic acids.
    Song F; Wei G; Wang L; Jiao J; Cheng Y; Zhu C
    J Org Chem; 2012 May; 77(10):4759-64. PubMed ID: 22554263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hg(2+) -induced in situ generated radical cation of (S)-BINOL-based polymer for highly enantioselective recognition of phenylalaninol.
    Jiao J; Li F; Zhang S; Quan Y; Zheng W; Cheng Y; Zhu C
    Macromol Rapid Commun; 2014 Aug; 35(16):1443-9. PubMed ID: 25048009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chiral Poly(ionic liquid) with Nonconjugated Backbone as a Fluorescent Enantioselective Sensor for Phenylalaninol and Tryptophan.
    Wu D; Yu Y; Zhang J; Guo L; Kong Y
    ACS Appl Mater Interfaces; 2018 Jul; 10(27):23362-23368. PubMed ID: 29911854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A highly selective fluorescence-based polymer sensor incorporating an (R,R)-salen moiety for Zn(2+) detection.
    Xu Y; Meng J; Meng L; Dong Y; Cheng Y; Zhu C
    Chemistry; 2010 Nov; 16(43):12898-903. PubMed ID: 20878797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of a "turn-on"-type enantioselective fluorescence sensor via a modified achiral MOF: applications for synchronous detection of phenylalaninol enantiomers.
    Xiao J; Wang X; Xu X; Tian F; Liu Z
    Analyst; 2021 Feb; 146(3):937-942. PubMed ID: 33242037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A colorimetric chiral sensor based on chiral crown ether for the recognition of the two enantiomers of primary amino alcohols and amines.
    Cho EN; Li Y; Kim HJ; Hyun MH
    Chirality; 2011 Apr; 23(4):349-53. PubMed ID: 21384440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An in situ generated achiral Cu(II)-containing polymer complex sensor for enantioselective recognition induced from L-/D-histidine enantiomers.
    Wei G; Meng F; Wang Y; Cheng Y; Zhu C
    Macromol Rapid Commun; 2014 Dec; 35(24):2077-81. PubMed ID: 25367559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A chiral ionic polymer for direct visual enantioselective recognition of α-amino acid anions.
    Song F; Fei N; Li F; Zhang S; Cheng Y; Zhu C
    Chem Commun (Camb); 2013 Apr; 49(28):2891-3. PubMed ID: 23450134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence recognition of chiral amino alcohols by using a novel ionic liquid sensor.
    Cai P; Wu D; Zhao X; Pan Y
    Analyst; 2017 Aug; 142(16):2961-2966. PubMed ID: 28726877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enantioselective fluorescent sensors: a tale of BINOL.
    Pu L
    Acc Chem Res; 2012 Feb; 45(2):150-63. PubMed ID: 21834528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards chiral microporous soluble polymers--binaphthalene-based polyimides.
    Ritter N; Senkovska I; Kaskel S; Weber J
    Macromol Rapid Commun; 2011 Mar; 32(5):438-43. PubMed ID: 21433196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous Determination of Concentration and Enantiomeric Composition in Fluorescent Sensing.
    Pu L
    Acc Chem Res; 2017 Apr; 50(4):1032-1040. PubMed ID: 28287702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chiral Fluorescent Recognition by Naphthalimide.
    Chen X; Hu N; Wei H; Wang H
    J Fluoresc; 2020 May; 30(3):679-685. PubMed ID: 32367338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amphiphilic Polymer-Based Fluorescent Probe for Enantioselective Recognition of Amino Acids in Immiscible Water and Organic Phases.
    Nian S; Pu L
    Chemistry; 2017 Dec; 23(71):18066-18073. PubMed ID: 29069528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 1D and 2D homochiral metal-organic frameworks built from a new chiral elongated binaphthalene-derived bipyridine.
    Wu CD; Zhang L; Lin W
    Inorg Chem; 2006 Sep; 45(18):7278-85. PubMed ID: 16933929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Platinum(II) Schiff base as versatile phosphorescent core component in conjugated oligo(phenylene-ethynylene)s.
    Tong WL; Lai LM; Chan MC
    Dalton Trans; 2008 Mar; (11):1412-4. PubMed ID: 18322617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combination of cyclodextrins and polymeric surfactants for chiral separations.
    Valle BC; Billiot FH; Shamsi SA; Zhu X; Powe AM; Warner IM
    Electrophoresis; 2004 Feb; 25(4-5):743-52. PubMed ID: 14981703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macrocyclic bisbinaphthyl fluorophores and their acyclic analogues: signal amplification and chiral recognition.
    Li ZB; Lin J; Zhang HC; Sabat M; Hyacinth M; Pu L
    J Org Chem; 2004 Sep; 69(19):6284-93. PubMed ID: 15357587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enantioselective fluorescent recognition of chiral acids by cyclohexane-1,2-diamine-based bisbinaphthyl molecules.
    Li ZB; Lin J; Sabat M; Hyacinth M; Pu L
    J Org Chem; 2007 Jun; 72(13):4905-16. PubMed ID: 17530897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.