These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
493 related articles for article (PubMed ID: 24123532)
1. Long-term dynamics of mycorrhizal root tips in a loblolly pine forest grown with free-air CO2 enrichment and soil N fertilization for 6 years. Pritchard SG; Taylor BN; Cooper ER; Beidler KV; Strand AE; McCormack ML; Zhang S Glob Chang Biol; 2014 Apr; 20(4):1313-26. PubMed ID: 24123532 [TBL] [Abstract][Full Text] [Related]
2. Root length, biomass, tissue chemistry and mycorrhizal colonization following 14 years of CO2 enrichment and 6 years of N fertilization in a warm temperate forest. Taylor BN; Strand AE; Cooper ER; Beidler KV; Schönholz M; Pritchard SG Tree Physiol; 2014 Sep; 34(9):955-65. PubMed ID: 25056092 [TBL] [Abstract][Full Text] [Related]
3. Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Phillips RP; Finzi AC; Bernhardt ES Ecol Lett; 2011 Feb; 14(2):187-94. PubMed ID: 21176050 [TBL] [Abstract][Full Text] [Related]
4. Sustained effects of atmospheric [CO2] and nitrogen availability on forest soil CO2 efflux. Oishi AC; Palmroth S; Johnsen KH; McCarthy HR; Oren R Glob Chang Biol; 2014 Apr; 20(4):1146-60. PubMed ID: 24115580 [TBL] [Abstract][Full Text] [Related]
5. Soil incorporation of logging residue affects fine-root and mycorrhizal root-tip dynamics of young loblolly pine clones. Pritchard SG; Maier CA; Johnsen KH; Grabman AJ; Chalmers AP; Burke MK Tree Physiol; 2010 Oct; 30(10):1299-310. PubMed ID: 20668289 [TBL] [Abstract][Full Text] [Related]
6. Impacts of fine root turnover on forest NPP and soil C sequestration potential. Matamala R; Gonzàlez-Meler MA; Jastrow JD; Norby RJ; Schlesinger WH Science; 2003 Nov; 302(5649):1385-7. PubMed ID: 14631037 [TBL] [Abstract][Full Text] [Related]
7. The rhizosphere and hyphosphere differ in their impacts on carbon and nitrogen cycling in forests exposed to elevated CO₂. Meier IC; Pritchard SG; Brzostek ER; McCormack ML; Phillips RP New Phytol; 2015 Feb; 205(3):1164-1174. PubMed ID: 25348688 [TBL] [Abstract][Full Text] [Related]
8. Fine root chemistry and decomposition in model communities of north-temperate tree species show little response to elevated atmospheric CO2 and varying soil resource availability. King JS; Pregitzer KS; Zak DR; Holmes WE; Schmidt K Oecologia; 2005 Dec; 146(2):318-28. PubMed ID: 16041614 [TBL] [Abstract][Full Text] [Related]
9. Changes in root architecture under elevated concentrations of CO₂ and nitrogen reflect alternate soil exploration strategies. Beidler KV; Taylor BN; Strand AE; Cooper ER; Schönholz M; Pritchard SG New Phytol; 2015 Feb; 205(3):1153-1163. PubMed ID: 25348775 [TBL] [Abstract][Full Text] [Related]
10. Influence of elevated CO2 and mycorrhizae on nitrogen acquisition: contrasting responses in Pinus taeda and Liquidambar styraciflua. Constable JV; Bassirirad H; Lussenhop J; Zerihun A Tree Physiol; 2001 Feb; 21(2-3):83-91. PubMed ID: 11303652 [TBL] [Abstract][Full Text] [Related]
11. The nitrogen budget of a pine forest under free air CO Finzi AC; DeLucia EH; Hamilton JG; Richter DD; Schlesinger WH Oecologia; 2002 Aug; 132(4):567-578. PubMed ID: 28547643 [TBL] [Abstract][Full Text] [Related]
12. Fine-root respiration in a loblolly pine (Pinus taeda L.) forest exposed to elevated CO2 and N fertilization. Drake JE; Stoy PC; Jackson RB; DeLucia EH Plant Cell Environ; 2008 Nov; 31(11):1663-72. PubMed ID: 18684240 [TBL] [Abstract][Full Text] [Related]
13. CO2 and N-fertilization effects on fine-root length, production, and mortality: a 4-year ponderosa pine study. Phillips DL; Johnson MG; Tingey DT; Storm MJ; Ball JT; Johnson DW Oecologia; 2006 Jun; 148(3):517-25. PubMed ID: 16547735 [TBL] [Abstract][Full Text] [Related]
14. Nitrogen uptake, distribution, turnover, and efficiency of use in a CO2-enriched sweetgum forest. Norby RJ; Iversen CM Ecology; 2006 Jan; 87(1):5-14. PubMed ID: 16634292 [TBL] [Abstract][Full Text] [Related]
15. The response of coarse root biomass to long-term CO Maier CA; Johnsen KH; Anderson PH; Palmroth S; Kim D; McCarthy HR; Oren R Glob Chang Biol; 2022 Feb; 28(4):1458-1476. PubMed ID: 34783402 [TBL] [Abstract][Full Text] [Related]
16. Increased leaf area index and efficiency drive enhanced production under elevated atmospheric [CO Palmroth S; Kim D; Maier CA; Medvigy D; Walker AP; Oren R Glob Chang Biol; 2024 Feb; 30(2):e17190. PubMed ID: 38403855 [TBL] [Abstract][Full Text] [Related]
17. Progressive nitrogen limitation of ecosystem processes under elevated CO2 in a warm-temperate forest. Finzi AC; Moore DJ; DeLucia EH; Lichter J; Hofmockel KS; Jackson RB; Kim HS; Matamala R; McCarthy HR; Oren R; Pippen JS; Schlesinger WH Ecology; 2006 Jan; 87(1):15-25. PubMed ID: 16634293 [TBL] [Abstract][Full Text] [Related]
18. Response to CO2 enrichment of understory vegetation in the shade of forests. Kim D; Oren R; Qian SS Glob Chang Biol; 2016 Feb; 22(2):944-56. PubMed ID: 26463669 [TBL] [Abstract][Full Text] [Related]
19. Forest carbon balance under elevated CO Hamilton JG; DeLucia EH; George K; Naidu SL; Finzi AC; Schlesinger WH Oecologia; 2002 Apr; 131(2):250-260. PubMed ID: 28547693 [TBL] [Abstract][Full Text] [Related]
20. Relationships between net photosynthesis and foliar nitrogen concentrations in a loblolly pine forest ecosystem grown in elevated atmospheric carbon dioxide. Springer CJ; DeLucia EH; Thomas RB Tree Physiol; 2005 Apr; 25(4):385-94. PubMed ID: 15687087 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]