These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 24123546)

  • 41. (1)La and (1)Lb States of Indole and Azaindole: Is Density Functional Theory Inadequate?
    Arulmozhiraja S; Coote ML
    J Chem Theory Comput; 2012 Feb; 8(2):575-84. PubMed ID: 26596606
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Tailoring transition metal complexes for nonlinear optics applications. 2. A theoretical investigation of the second-order nonlinear optical properties of M(CO)(5)L complexes (M = Cr, W; L = Py, PyCHO, Pyz, PyzBF(3), BPE, BPEBF(3)).
    Bruschi M; Fantucci P; Pizzotti M
    J Phys Chem A; 2005 Oct; 109(42):9637-45. PubMed ID: 16866417
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Where is the spin? Understanding electronic structure and g-tensors for ruthenium complexes with redox-active quinonoid ligands.
    Remenyi C; Kaupp M
    J Am Chem Soc; 2005 Aug; 127(32):11399-413. PubMed ID: 16089469
    [TBL] [Abstract][Full Text] [Related]  

  • 44. RASPT2/RASSCF vs Range-Separated/Hybrid DFT Methods: Assessing the Excited States of a Ru(II)bipyridyl Complex.
    Escudero D; González L
    J Chem Theory Comput; 2012 Jan; 8(1):203-13. PubMed ID: 26592882
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Organometallic complexes for nonlinear optics. 43. Quadratic optical nonlinearities of dipolar alkynylruthenium complexes with phenyleneethynylene/phenylenevinylene bridges.
    Rigamonti L; Babgi B; Cifuentes MP; Roberts RL; Petrie S; Stranger R; Righetto S; Teshome A; Asselberghs I; Clays K; Humphrey MG
    Inorg Chem; 2009 Apr; 48(8):3562-72. PubMed ID: 19298046
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mixed-valent metals bridged by a radical ligand: fact or fiction based on structure-oxidation state correlations.
    Sarkar B; Patra S; Fiedler J; Sunoj RB; Janardanan D; Lahiri GK; Kaim W
    J Am Chem Soc; 2008 Mar; 130(11):3532-42. PubMed ID: 18290644
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Switchable nonlinear optical properties of η5-monocyclopentadienylmetal complexes: a DFT approach.
    Mendes PJ; Silva TJ; Garcia MH; Ramalho JP; Carvalho AJ
    J Chem Inf Model; 2012 Aug; 52(8):1970-83. PubMed ID: 22830563
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evolution of linear absorption and nonlinear optical properties in V-shaped ruthenium(II)-based chromophores.
    Coe BJ; Foxon SP; Harper EC; Helliwell M; Raftery J; Swanson CA; Brunschwig BS; Clays K; Franz E; Garín J; Orduna J; Horton PN; Hursthouse MB
    J Am Chem Soc; 2010 Feb; 132(5):1706-23. PubMed ID: 20078060
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Impact of the synergistic collaboration of oligothiophene bridges and ruthenium complexes on the optical properties of dumbbell-shaped compounds.
    Costa RD; Aragó J; Ortí E; Pappenfus TM; Mann KR; Matczyszyn K; Samoc M; Zafra JL; López Navarrete JT; Casado J
    Chemistry; 2013 Jan; 19(4):1476-88. PubMed ID: 23208872
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The characterization of the high-frequency vibronic contributions to the 77 K emission spectra of ruthenium-am(m)ine-bipyridyl complexes, their attenuation with decreasing energy gaps, and the implications of strong electronic coupling for inverted-region electron transfer.
    Xie P; Chen YJ; Uddin MJ; Endicott JF
    J Phys Chem A; 2005 Jun; 109(21):4671-89. PubMed ID: 16833808
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mixed-ligand complexes of ruthenium(II) containing new photoactive or electroactive ligands: synthesis, spectral characterization and DNA interactions.
    Ghosh T; Maiya BG; Samanta A; Shukla AD; Jose DA; Kumar DK; Das A
    J Biol Inorg Chem; 2005 Aug; 10(5):496-508. PubMed ID: 15981005
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ruthenium(II) bipyridine complexes bearing new keto-enol azoimine ligands: synthesis, structure, electrochemistry and DFT calculations.
    Al-Noaimi M; Awwadi FF; Mansi A; Abdel-Rahman OS; Hammoudeh A; Warad I
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 135():828-39. PubMed ID: 25150434
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Unraveling the Symmetry Effects on the Second-Order Nonlinear Optical Responses of Molecular Switches: The Case of Ruthenium Complexes.
    Beaujean P; Champagne B
    Inorg Chem; 2022 Jan; 61(4):1928-1940. PubMed ID: 35023732
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Theoretical study on the electronic excitations of a porphyrin-polypyridyl ruthenium(II) photosensitizer.
    Cárdenas-Jirón GI; Barboza CA; López R; Menéndez MI
    J Phys Chem A; 2011 Nov; 115(43):11988-97. PubMed ID: 21910497
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Vibrational Spectra of the Ruthenium-Tris-Bipyridine Dication and Its Reduced Form in Vacuo.
    Munshi MU; Martens J; Berden G; Oomens J
    J Phys Chem A; 2020 Mar; 124(12):2449-2459. PubMed ID: 32119552
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Molecular and Electronic Structures of Homoleptic Six-Coordinate Cobalt(I) Complexes of 2,2':6',2″-Terpyridine, 2,2'-Bipyridine, and 1,10-Phenanthroline. An Experimental and Computational Study.
    England J; Bill E; Weyhermüller T; Neese F; Atanasov M; Wieghardt K
    Inorg Chem; 2015 Dec; 54(24):12002-18. PubMed ID: 26636830
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Computational modeling of the triplet metal-to-ligand charge-transfer excited-state structures of mono-bipyridine-ruthenium(II) complexes and comparisons to their 77 K emission band shapes.
    Lord RL; Allard MM; Thomas RA; Odongo OS; Schlegel HB; Chen YJ; Endicott JF
    Inorg Chem; 2013 Feb; 52(3):1185-98. PubMed ID: 23343436
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Square-antiprismatic eight-coordinate complexes of divalent first-row transition metal cations: a density functional theory exploration of the electronic-structural landscape.
    Conradie J; Patra AK; Harrop TC; Ghosh A
    Inorg Chem; 2015 Feb; 54(4):1375-83. PubMed ID: 25574575
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Theoretical investigation on the photophysical properties of model ruthenium complexes with diazabutadiene ligands [Ru(bpy)(3-x)(dab)(x)](2+) (x = 1-3).
    Guillon T; Boggio-Pasqua M; Alary F; Heully JL; Lebon E; Sutra P; Igau A
    Inorg Chem; 2010 Oct; 49(19):8862-72. PubMed ID: 20812691
    [TBL] [Abstract][Full Text] [Related]  

  • 60. DFT Simulation of Structural and Optical Properties of 9-Aminoacridine Half-Sandwich Ru(II), Rh(III), and Ir(III) Antitumoral Complexes and Their Interaction with DNA.
    Cerón-Carrasco JP; Ruiz J; Vicente C; de Haro C; Bautista D; Zúñiga J; Requena A
    J Chem Theory Comput; 2017 Aug; 13(8):3898-3910. PubMed ID: 28641006
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.