BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 24123613)

  • 1. Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis.
    Nakayama T; Fish MB; Fisher M; Oomen-Hajagos J; Thomsen GH; Grainger RM
    Genesis; 2013 Dec; 51(12):835-43. PubMed ID: 24123613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biallelic genome modification in F(0) Xenopus tropicalis embryos using the CRISPR/Cas system.
    Blitz IL; Biesinger J; Xie X; Cho KW
    Genesis; 2013 Dec; 51(12):827-34. PubMed ID: 24123579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cas9-based genome editing in Xenopus tropicalis.
    Nakayama T; Blitz IL; Fish MB; Odeleye AO; Manohar S; Cho KW; Grainger RM
    Methods Enzymol; 2014; 546():355-75. PubMed ID: 25398349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient RNA/Cas9-mediated genome editing in Xenopus tropicalis.
    Guo X; Zhang T; Hu Z; Zhang Y; Shi Z; Wang Q; Cui Y; Wang F; Zhao H; Chen Y
    Development; 2014 Feb; 141(3):707-14. PubMed ID: 24401372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heritable CRISPR/Cas9-mediated targeted integration in Xenopus tropicalis.
    Shi Z; Wang F; Cui Y; Liu Z; Guo X; Zhang Y; Deng Y; Zhao H; Chen Y
    FASEB J; 2015 Dec; 29(12):4914-23. PubMed ID: 26268927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Simple Protocol for Loss-of-Function Analysis in Xenopus tropicalis Founders Using the CRISPR-Cas System.
    Sakane Y; Suzuki KT; Yamamoto T
    Methods Mol Biol; 2017; 1630():189-203. PubMed ID: 28643260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid and efficient analysis of gene function using CRISPR-Cas9 in Xenopus tropicalis founders.
    Shigeta M; Sakane Y; Iida M; Suzuki M; Kashiwagi K; Kashiwagi A; Fujii S; Yamamoto T; Suzuki KT
    Genes Cells; 2016 Jul; 21(7):755-71. PubMed ID: 27219625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative analysis of mouse and human preimplantation development following POU5F1 CRISPR/Cas9 targeting reveals interspecies differences.
    Stamatiadis P; Boel A; Cosemans G; Popovic M; Bekaert B; Guggilla R; Tang M; De Sutter P; Van Nieuwerburgh F; Menten B; Stoop D; Chuva de Sousa Lopes SM; Coucke P; Heindryckx B
    Hum Reprod; 2021 Apr; 36(5):1242-1252. PubMed ID: 33609360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simple embryo injection of long single-stranded donor templates with the CRISPR/Cas9 system leads to homology-directed repair in Xenopus tropicalis and Xenopus laevis.
    Nakayama T; Grainger RM; Cha SW
    Genesis; 2020 Jun; 58(6):e23366. PubMed ID: 32277804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Xenopus mutant reveals necessity of rax for specifying the eye field which otherwise forms tissue with telencephalic and diencephalic character.
    Fish MB; Nakayama T; Fisher M; Hirsch N; Cox A; Reeder R; Carruthers S; Hall A; Stemple DL; Grainger RM
    Dev Biol; 2014 Nov; 395(2):317-330. PubMed ID: 25224223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/Cas9 mediated knockout of rb1 and rbl1 leads to rapid and penetrant retinoblastoma development in Xenopus tropicalis.
    Naert T; Colpaert R; Van Nieuwenhuysen T; Dimitrakopoulou D; Leoen J; Haustraete J; Boel A; Steyaert W; Lepez T; Deforce D; Willaert A; Creytens D; Vleminckx K
    Sci Rep; 2016 Oct; 6():35264. PubMed ID: 27739525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple genome modifications by the CRISPR/Cas9 system in zebrafish.
    Ota S; Hisano Y; Ikawa Y; Kawahara A
    Genes Cells; 2014 Jul; 19(7):555-64. PubMed ID: 24848337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Advances in application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 system in stem cells research].
    Sun SJ; Huo JH; Geng ZJ; Sun XY; Fu XB
    Zhonghua Shao Shang Za Zhi; 2018 Apr; 34(4):253-256. PubMed ID: 29690746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Xenopus pax6 mutants affect eye development and other organ systems, and have phenotypic similarities to human aniridia patients.
    Nakayama T; Fisher M; Nakajima K; Odeleye AO; Zimmerman KB; Fish MB; Yaoita Y; Chojnowski JL; Lauderdale JD; Netland PA; Grainger RM
    Dev Biol; 2015 Dec; 408(2):328-44. PubMed ID: 25724657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeted mutagenesis of aryl hydrocarbon receptor 2a and 2b genes in Atlantic killifish (Fundulus heteroclitus).
    Aluru N; Karchner SI; Franks DG; Nacci D; Champlin D; Hahn ME
    Aquat Toxicol; 2015 Jan; 158():192-201. PubMed ID: 25481785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeted gene disruption by use of CRISPR/Cas9 ribonucleoprotein complexes in the water flea Daphnia pulex.
    Hiruta C; Kakui K; Tollefsen KE; Iguchi T
    Genes Cells; 2018 Jun; 23(6):494-502. PubMed ID: 29718583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purine-mediated signalling triggers eye development.
    Massé K; Bhamra S; Eason R; Dale N; Jones EA
    Nature; 2007 Oct; 449(7165):1058-62. PubMed ID: 17960245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling human point mutation diseases in
    Shi Z; Xin H; Tian D; Lian J; Wang J; Liu G; Ran R; Shi S; Zhang Z; Shi Y; Deng Y; Hou C; Chen Y
    FASEB J; 2019 Jun; 33(6):6962-6968. PubMed ID: 30844313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of CRISPR/Cas Genome Editing Technology for Targeted Mutagenesis in Rice.
    Xu R; Wei P; Yang J
    Methods Mol Biol; 2017; 1498():33-40. PubMed ID: 27709567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simple, fast, tissue-specific bacterial artificial chromosome transgenesis in Xenopus.
    Fish MB; Nakayama T; Grainger RM
    Genesis; 2012 Mar; 50(3):307-15. PubMed ID: 22084035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.