These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 24123673)

  • 21. [Current status of SNPs interaction in genome-wide association study].
    Li FG; Wang ZP; Hu G; Li H
    Yi Chuan; 2011 Sep; 33(9):901-10. PubMed ID: 21951789
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome-wide Analysis of Large-scale Longitudinal Outcomes using Penalization -GALLOP algorithm.
    Sikorska K; Lesaffre E; Groenen PJF; Rivadeneira F; Eilers PHC
    Sci Rep; 2018 May; 8(1):6815. PubMed ID: 29717146
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gene, region and pathway level analyses in whole-genome studies.
    De la Cruz O; Wen X; Ke B; Song M; Nicolae DL
    Genet Epidemiol; 2010 Apr; 34(3):222-231. PubMed ID: 20013942
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-throughput and efficient multilocus genome-wide association study on longitudinal outcomes.
    Xu H; Li X; Yang Y; Li Y; Pinheiro J; Sasser K; Hamadeh H; Steven X; Yuan M;
    Bioinformatics; 2020 May; 36(10):3004-3010. PubMed ID: 32096821
    [TBL] [Abstract][Full Text] [Related]  

  • 25. pLARmEB: integration of least angle regression with empirical Bayes for multilocus genome-wide association studies.
    Zhang J; Feng JY; Ni YL; Wen YJ; Niu Y; Tamba CL; Yue C; Song Q; Zhang YM
    Heredity (Edinb); 2017 Jun; 118(6):517-524. PubMed ID: 28295030
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Uncovering networks from genome-wide association studies via circular genomic permutation.
    Cabrera CP; Navarro P; Huffman JE; Wright AF; Hayward C; Campbell H; Wilson JF; Rudan I; Hastie ND; Vitart V; Haley CS
    G3 (Bethesda); 2012 Sep; 2(9):1067-75. PubMed ID: 22973544
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simulating autosomal genotypes with realistic linkage disequilibrium and a spiked-in genetic effect.
    Shi M; Umbach DM; Wise AS; Weinberg CR
    BMC Bioinformatics; 2018 Jan; 19(1):2. PubMed ID: 29291710
    [TBL] [Abstract][Full Text] [Related]  

  • 28. GWIS--model-free, fast and exhaustive search for epistatic interactions in case-control GWAS.
    Goudey B; Rawlinson D; Wang Q; Shi F; Ferra H; Campbell RM; Stern L; Inouye MT; Ong CS; Kowalczyk A
    BMC Genomics; 2013; 14 Suppl 3(Suppl 3):S10. PubMed ID: 23819779
    [TBL] [Abstract][Full Text] [Related]  

  • 29. GWASinlps: non-local prior based iterative SNP selection tool for genome-wide association studies.
    Sanyal N; Lo MT; Kauppi K; Djurovic S; Andreassen OA; Johnson VE; Chen CH
    Bioinformatics; 2019 Jan; 35(1):1-11. PubMed ID: 29931045
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Performance of a blockwise approach in variable selection using linkage disequilibrium information.
    Dehman A; Ambroise C; Neuvial P
    BMC Bioinformatics; 2015 May; 16():148. PubMed ID: 25951947
    [TBL] [Abstract][Full Text] [Related]  

  • 31. fastJT: An R package for robust and efficient feature selection for machine learning and genome-wide association studies.
    Lin J; Sibley A; Shterev I; Nixon A; Innocenti F; Chan C; Owzar K
    BMC Bioinformatics; 2019 Jun; 20(1):333. PubMed ID: 31195980
    [TBL] [Abstract][Full Text] [Related]  

  • 32. GW-SEM: A Statistical Package to Conduct Genome-Wide Structural Equation Modeling.
    Verhulst B; Maes HH; Neale MC
    Behav Genet; 2017 May; 47(3):345-359. PubMed ID: 28299468
    [TBL] [Abstract][Full Text] [Related]  

  • 33. bNEAT: a Bayesian network method for detecting epistatic interactions in genome-wide association studies.
    Han B; Chen XW
    BMC Genomics; 2011; 12 Suppl 2(Suppl 2):S9. PubMed ID: 21989368
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gsslasso Cox: a Bayesian hierarchical model for predicting survival and detecting associated genes by incorporating pathway information.
    Tang Z; Lei S; Zhang X; Yi Z; Guo B; Chen JY; Shen Y; Yi N
    BMC Bioinformatics; 2019 Feb; 20(1):94. PubMed ID: 30813883
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Part 1. Statistical Learning Methods for the Effects of Multiple Air Pollution Constituents.
    Coull BA; Bobb JF; Wellenius GA; Kioumourtzoglou MA; Mittleman MA; Koutrakis P; Godleski JJ
    Res Rep Health Eff Inst; 2015 Jun; (183 Pt 1-2):5-50. PubMed ID: 26333238
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identifying novel associations in GWAS by hierarchical Bayesian latent variable detection of differentially misclassified phenotypes.
    Shafquat A; Crystal RG; Mezey JG
    BMC Bioinformatics; 2020 May; 21(1):178. PubMed ID: 32381021
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A fast and scalable framework for large-scale and ultrahigh-dimensional sparse regression with application to the UK Biobank.
    Qian J; Tanigawa Y; Du W; Aguirre M; Chang C; Tibshirani R; Rivas MA; Hastie T
    PLoS Genet; 2020 Oct; 16(10):e1009141. PubMed ID: 33095761
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Bayesian approach to genetic association studies with family-based designs.
    Naylor MG; Weiss ST; Lange C
    Genet Epidemiol; 2010 Sep; 34(6):569-74. PubMed ID: 20818722
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MACOED: a multi-objective ant colony optimization algorithm for SNP epistasis detection in genome-wide association studies.
    Jing PJ; Shen HB
    Bioinformatics; 2015 Mar; 31(5):634-41. PubMed ID: 25338719
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PleioGRiP: genetic risk prediction with pleiotropy.
    Hartley SW; Sebastiani P
    Bioinformatics; 2013 Apr; 29(8):1086-8. PubMed ID: 23419378
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.