These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 24123810)
1. A site-specific genetic modification for induction of pluripotency and subsequent isolation of derived lung alveolar epithelial type II cells. Yan Q; Quan Y; Sun H; Peng X; Zou Z; Alcorn JL; Wetsel RA; Wang D Stem Cells; 2014 Feb; 32(2):402-13. PubMed ID: 24123810 [TBL] [Abstract][Full Text] [Related]
2. Exosome miR-371b-5p promotes proliferation of lung alveolar progenitor type II cells by using PTEN to orchestrate the PI3K/Akt signaling. Quan Y; Wang Z; Gong L; Peng X; Richard MA; Zhang J; Fornage M; Alcorn JL; Wang D Stem Cell Res Ther; 2017 Jun; 8(1):138. PubMed ID: 28595637 [TBL] [Abstract][Full Text] [Related]
3. Zinc finger nuclease-expressing baculoviral vectors mediate targeted genome integration of reprogramming factor genes to facilitate the generation of human induced pluripotent stem cells. Phang RZ; Tay FC; Goh SL; Lau CH; Zhu H; Tan WK; Liang Q; Chen C; Du S; Li Z; Tay JC; Wu C; Zeng J; Fan W; Toh HC; Wang S Stem Cells Transl Med; 2013 Dec; 2(12):935-45. PubMed ID: 24167318 [TBL] [Abstract][Full Text] [Related]
4. Residual expression of the reprogramming factors prevents differentiation of iPSC generated from human fibroblasts and cord blood CD34+ progenitors. Ramos-Mejía V; Montes R; Bueno C; Ayllón V; Real PJ; Rodríguez R; Menendez P PLoS One; 2012; 7(4):e35824. PubMed ID: 22545141 [TBL] [Abstract][Full Text] [Related]
5. Facile and efficient reprogramming of ciliary body epithelial cells into induced pluripotent stem cells. Ni A; Wu MJ; Nakanishi Y; Chavala SH Stem Cells Dev; 2013 Sep; 22(18):2543-50. PubMed ID: 23635313 [TBL] [Abstract][Full Text] [Related]
6. Nuclear reprogramming with a non-integrating human RNA virus. Driscoll CB; Tonne JM; El Khatib M; Cattaneo R; Ikeda Y; Devaux P Stem Cell Res Ther; 2015 Mar; 6(1):48. PubMed ID: 25889591 [TBL] [Abstract][Full Text] [Related]
7. Live cell monitoring of hiPSC generation and differentiation using differential expression of endogenous microRNAs. Kamata M; Liang M; Liu S; Nagaoka Y; Chen IS PLoS One; 2010 Jul; 5(7):e11834. PubMed ID: 20676373 [TBL] [Abstract][Full Text] [Related]
8. Isolation and characterization of alveolar epithelial type II cells derived from mouse embryonic stem cells. Sun H; Quan Y; Yan Q; Peng X; Mao Z; Wetsel RA; Wang D Tissue Eng Part C Methods; 2014 Jun; 20(6):464-72. PubMed ID: 24102479 [TBL] [Abstract][Full Text] [Related]
9. Generation of Human Induced Pluripotent Stem Cells Using RNA-Based Sendai Virus System and Pluripotency Validation of the Resulting Cell Population. Chichagova V; Sanchez-Vera I; Armstrong L; Steel D; Lako M Methods Mol Biol; 2016; 1353():285-307. PubMed ID: 25697416 [TBL] [Abstract][Full Text] [Related]
10. Generation of Human Induced Pluripotent Stem Cells from Extraembryonic Tissues of Fetuses Affected by Monogenic Diseases. Spitalieri P; Talarico RV; Botta A; Murdocca M; D'Apice MR; Orlandi A; Giardina E; Santoro M; Brancati F; Novelli G; Sangiuolo F Cell Reprogram; 2015 Aug; 17(4):275-87. PubMed ID: 26474030 [TBL] [Abstract][Full Text] [Related]
11. High-efficiency generation of induced pluripotent mesenchymal stem cells from human dermal fibroblasts using recombinant proteins. Chen F; Zhang G; Yu L; Feng Y; Li X; Zhang Z; Wang Y; Sun D; Pradhan S Stem Cell Res Ther; 2016 Jul; 7(1):99. PubMed ID: 27473118 [TBL] [Abstract][Full Text] [Related]
12. Generation of iPSCs from mouse fibroblasts with a single gene, Oct4, and small molecules. Li Y; Zhang Q; Yin X; Yang W; Du Y; Hou P; Ge J; Liu C; Zhang W; Zhang X; Wu Y; Li H; Liu K; Wu C; Song Z; Zhao Y; Shi Y; Deng H Cell Res; 2011 Jan; 21(1):196-204. PubMed ID: 20956998 [TBL] [Abstract][Full Text] [Related]
13. Intermediate Standstill Clones Trapped in the Reprogramming of Human Fibroblasts to Induced Pluripotent Stem Cells. Zhang L; Wang Y; Zhang Y; Wang L; Huang H Cell Reprogram; 2020 Apr; 22(2):99-105. PubMed ID: 32182120 [TBL] [Abstract][Full Text] [Related]
14. Excision of reprogramming transgenes improves the differentiation potential of iPS cells generated with a single excisable vector. Sommer CA; Sommer AG; Longmire TA; Christodoulou C; Thomas DD; Gostissa M; Alt FW; Murphy GJ; Kotton DN; Mostoslavsky G Stem Cells; 2010 Jan; 28(1):64-74. PubMed ID: 19904830 [TBL] [Abstract][Full Text] [Related]
15. Human fibroblast reprogramming to pluripotent stem cells regulated by the miR19a/b-PTEN axis. He X; Cao Y; Wang L; Han Y; Zhong X; Zhou G; Cai Y; Zhang H; Gao P PLoS One; 2014; 9(4):e95213. PubMed ID: 24740298 [TBL] [Abstract][Full Text] [Related]
16. Reprogramming of murine and human somatic cells using a single polycistronic vector. Carey BW; Markoulaki S; Hanna J; Saha K; Gao Q; Mitalipova M; Jaenisch R Proc Natl Acad Sci U S A; 2009 Jan; 106(1):157-62. PubMed ID: 19109433 [TBL] [Abstract][Full Text] [Related]
17. Human iPS cell-derived fibroblast-like cells as feeder layers for iPS cell derivation and expansion. Du SH; Tay JC; Chen C; Tay FC; Tan WK; Li ZD; Wang S J Biosci Bioeng; 2015 Aug; 120(2):210-7. PubMed ID: 25622768 [TBL] [Abstract][Full Text] [Related]
18. OCT4 and SOX2 Work as Transcriptional Activators in Reprogramming Human Fibroblasts. Narayan S; Bryant G; Shah S; Berrozpe G; Ptashne M Cell Rep; 2017 Aug; 20(7):1585-1596. PubMed ID: 28813671 [TBL] [Abstract][Full Text] [Related]
19. Enhanced human somatic cell reprogramming efficiency by fusion of the MYC transactivation domain and OCT4. Wang L; Huang D; Huang C; Yin Y; Vali K; Zhang M; Tang Y Stem Cell Res; 2017 Dec; 25():88-97. PubMed ID: 29125994 [TBL] [Abstract][Full Text] [Related]
20. NKX3-1 is required for induced pluripotent stem cell reprogramming and can replace OCT4 in mouse and human iPSC induction. Mai T; Markov GJ; Brady JJ; Palla A; Zeng H; Sebastiano V; Blau HM Nat Cell Biol; 2018 Aug; 20(8):900-908. PubMed ID: 30013107 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]