These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 24123913)

  • 1. Undifferentiated human adipose-derived stromal/stem cells loaded onto wet-spun starch-polycaprolactone scaffolds enhance bone regeneration: nude mice calvarial defect in vivo study.
    Carvalho PP; Leonor IB; Smith BJ; Dias IR; Reis RL; Gimble JM; Gomes ME
    J Biomed Mater Res A; 2014 Sep; 102(9):3102-11. PubMed ID: 24123913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human adipose derived stromal cells heal critical size mouse calvarial defects.
    Levi B; James AW; Nelson ER; Vistnes D; Wu B; Lee M; Gupta A; Longaker MT
    PLoS One; 2010 Jun; 5(6):e11177. PubMed ID: 20567510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human adipose-derived stromal cells stimulate autogenous skeletal repair via paracrine Hedgehog signaling with calvarial osteoblasts.
    Levi B; James AW; Nelson ER; Li S; Peng M; Commons GW; Lee M; Wu B; Longaker MT
    Stem Cells Dev; 2011 Feb; 20(2):243-57. PubMed ID: 20698749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dura mater stimulates human adipose-derived stromal cells to undergo bone formation in mouse calvarial defects.
    Levi B; Nelson ER; Li S; James AW; Hyun JS; Montoro DT; Lee M; Glotzbach JP; Commons GW; Longaker MT
    Stem Cells; 2011 Aug; 29(8):1241-55. PubMed ID: 21656608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteogenesis for postoperative temporal bone defects using human ear adipose-derived stromal cells and tissue engineering: An animal model study.
    Kim YJ; Park SG; Shin B; Kim J; Kim SW; Choo OS; Yin XY; Min BH; Choung YH
    J Biomed Mater Res A; 2017 Dec; 105(12):3493-3501. PubMed ID: 28875515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Stromal Vascular Fraction and Passaged Adipose-Derived Stromal/Stem Cells as Point-of-Care Agents for Bone Regeneration.
    Nyberg E; Farris A; O'Sullivan A; Rodriguez R; Grayson W
    Tissue Eng Part A; 2019 Nov; 25(21-22):1459-1469. PubMed ID: 30734661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acute skeletal injury is necessary for human adipose-derived stromal cell-mediated calvarial regeneration.
    Levi B; James AW; Nelson ER; Peng M; Wan DC; Commons GW; Lee M; Wu B; Longaker MT
    Plast Reconstr Surg; 2011 Mar; 127(3):1118-1129. PubMed ID: 21364415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved vascularisation but inefficient in vivo bone regeneration of adipose stem cells and poly-3-hydroxybutyrate-co-3-hydroxyvalerate scaffolds in xeno-free conditions.
    Paula ACC; Carvalho PH; Martins TMM; Boeloni JN; Cunha PS; Novikoff S; Correlo VM; Reis RL; Goes AM
    Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110301. PubMed ID: 31761156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo differentiation of undifferentiated human adipose tissue-derived mesenchymal stem cells in critical-sized calvarial bone defects.
    Choi JW; Park EJ; Shin HS; Shin IS; Ra JC; Koh KS
    Ann Plast Surg; 2014 Feb; 72(2):225-33. PubMed ID: 23221992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Repair of a critical-sized calvarial defect model using adipose-derived stromal cells harvested from lipoaspirate.
    Lo DD; Hyun JS; Chung MT; Montoro DT; Zimmermann A; Grova MM; Lee M; Wan DC; Longaker MT
    J Vis Exp; 2012 Oct; (68):. PubMed ID: 23149856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deleterious effects of freezing on osteogenic differentiation of human adipose-derived stromal cells in vitro and in vivo.
    James AW; Levi B; Nelson ER; Peng M; Commons GW; Lee M; Wu B; Longaker MT
    Stem Cells Dev; 2011 Mar; 20(3):427-39. PubMed ID: 20536327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Paper-based bioactive scaffolds for stem cell-mediated bone tissue engineering.
    Park HJ; Yu SJ; Yang K; Jin Y; Cho AN; Kim J; Lee B; Yang HS; Im SG; Cho SW
    Biomaterials; 2014 Dec; 35(37):9811-9823. PubMed ID: 25241158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osteogenic differentiation of adipose-derived stem cells and calvarial defect repair using baculovirus-mediated co-expression of BMP-2 and miR-148b.
    Liao YH; Chang YH; Sung LY; Li KC; Yeh CL; Yen TC; Hwang SM; Lin KJ; Hu YC
    Biomaterials; 2014 Jun; 35(18):4901-10. PubMed ID: 24674465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osteogenic differentiation and angiogenesis with cocultured adipose-derived stromal cells and bone marrow stromal cells.
    Kim KI; Park S; Im GI
    Biomaterials; 2014 Jun; 35(17):4792-804. PubMed ID: 24655782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of tibial regeneration in a rat model by adipose-derived stromal cells in a PLGA scaffold.
    Park BH; Zhou L; Jang KY; Park HS; Lim JM; Yoon SJ; Lee SY; Kim JR
    Bone; 2012 Sep; 51(3):313-23. PubMed ID: 22684001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo osteogenic potential of human adipose-derived stem cells/poly lactide-co-glycolic acid constructs for bone regeneration in a rat critical-sized calvarial defect model.
    Yoon E; Dhar S; Chun DE; Gharibjanian NA; Evans GR
    Tissue Eng; 2007 Mar; 13(3):619-27. PubMed ID: 17518608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of bone regeneration using osteogenic-induced adipose-derived stem cells combined with demineralized bone matrix in a rat critically-sized calvarial defect model.
    Kim HP; Ji YH; Rhee SC; Dhong ES; Park SH; Yoon ES
    Curr Stem Cell Res Ther; 2012 May; 7(3):165-72. PubMed ID: 22329583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo evaluation of mixtures of uncultured freshly isolated adipose-derived stem cells and demineralized bone matrix for bone regeneration in a rat critically sized calvarial defect model.
    Rhee SC; Ji YH; Gharibjanian NA; Dhong ES; Park SH; Yoon ES
    Stem Cells Dev; 2011 Feb; 20(2):233-42. PubMed ID: 20528145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonintegrating knockdown and customized scaffold design enhances human adipose-derived stem cells in skeletal repair.
    Levi B; Hyun JS; Nelson ER; Li S; Montoro DT; Wan DC; Jia FJ; Glotzbach JC; James AW; Lee M; Huang M; Quarto N; Gurtner GC; Wu JC; Longaker MT
    Stem Cells; 2011 Dec; 29(12):2018-29. PubMed ID: 21997852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of endothelial differentiated adipose-derived stem cells on vascularity and osteogenesis in poly(D,L-lactide) scaffolds in vivo.
    Sahar DE; Walker JA; Wang HT; Stephenson SM; Shah AR; Krishnegowda NK; Wenke JC
    J Craniofac Surg; 2012 May; 23(3):913-8. PubMed ID: 22627404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.