These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 24123961)

  • 1. Paramagnetic inorganic nanoparticles as T1 MRI contrast agents.
    Lee SH; Kim BH; Na HB; Hyeon T
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2014; 6(2):196-209. PubMed ID: 24123961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contrast agents for MRI.
    Shokrollahi H
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4485-97. PubMed ID: 24094150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Paramagnetic and Superparamagnetic Inorganic Nanoparticles for T1-Weighted Magnetic Resonance Imaging.
    Zeng L; Wu D; Zou R; Chen T; Zhang J; Wu A
    Curr Med Chem; 2018; 25(25):2970-2986. PubMed ID: 28292235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable T1 and T2 contrast abilities of manganese-engineered iron oxide nanoparticles through size control.
    Huang G; Li H; Chen J; Zhao Z; Yang L; Chi X; Chen Z; Wang X; Gao J
    Nanoscale; 2014 Sep; 6(17):10404-12. PubMed ID: 25079966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inorganic nanoparticle-based T1 and T1/T2 magnetic resonance contrast probes.
    Hu F; Zhao YS
    Nanoscale; 2012 Oct; 4(20):6235-43. PubMed ID: 22971876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contrast agents: magnetic resonance.
    Burtea C; Laurent S; Vander Elst L; Muller RN
    Handb Exp Pharmacol; 2008; (185 Pt 1):135-65. PubMed ID: 18626802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted dual-contrast T1- and T2-weighted magnetic resonance imaging of tumors using multifunctional gadolinium-labeled superparamagnetic iron oxide nanoparticles.
    Yang H; Zhuang Y; Sun Y; Dai A; Shi X; Wu D; Li F; Hu H; Yang S
    Biomaterials; 2011 Jul; 32(20):4584-93. PubMed ID: 21458063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mn(2+)-doped silica nanoparticles for hepatocyte-targeted detection of liver cancer in T1-weighted MRI.
    Kim SM; Im GH; Lee DG; Lee JH; Lee WJ; Lee IS
    Biomaterials; 2013 Nov; 34(35):8941-8. PubMed ID: 23973173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Paramagnetic dysprosium oxide nanoparticles and dysprosium hydroxide nanorods as T₂ MRI contrast agents.
    Kattel K; Park JY; Xu W; Kim HG; Lee EJ; Bony BA; Heo WC; Jin S; Baeck JS; Chang Y; Kim TJ; Bae JE; Chae KS; Lee GH
    Biomaterials; 2012 Apr; 33(11):3254-61. PubMed ID: 22277624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid synthesis of PEGylated ultrasmall gadolinium oxide nanoparticles for cell labeling and tracking with MRI.
    Faucher L; Tremblay M; Lagueux J; Gossuin Y; Fortin MA
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4506-15. PubMed ID: 22834680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pushing the sensitivity envelope of lanthanide-based magnetic resonance imaging (MRI) contrast agents for molecular imaging applications.
    Aime S; Castelli DD; Crich SG; Gianolio E; Terreno E
    Acc Chem Res; 2009 Jul; 42(7):822-31. PubMed ID: 19534516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parallel Comparative Studies on Mouse Toxicity of Oxide Nanoparticle- and Gadolinium-Based T1 MRI Contrast Agents.
    Chen R; Ling D; Zhao L; Wang S; Liu Y; Bai R; Baik S; Zhao Y; Chen C; Hyeon T
    ACS Nano; 2015 Dec; 9(12):12425-35. PubMed ID: 26567968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging of inflammation in the peripheral and central nervous system by magnetic resonance imaging.
    Stoll G; Bendszus M
    Neuroscience; 2009 Feb; 158(3):1151-60. PubMed ID: 18651996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo long-term magnetic resonance imaging activity of ferritin-based magnetic nanoparticles versus a standard contrast agent.
    Valero E; Fiorini S; Tambalo S; Busquier H; Callejas-Fernández J; Marzola P; Gálvez N; Domínguez-Vera JM
    J Med Chem; 2014 Jul; 57(13):5686-92. PubMed ID: 24901375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histological validation of iron-oxide and gadolinium based MRI contrast agents in experimental atherosclerosis: the do's and don't's.
    den Adel B; Bovens SM; te Boekhorst B; Strijkers GJ; Poelmann RE; van der Weerd L; Pasterkamp G
    Atherosclerosis; 2012 Dec; 225(2):274-80. PubMed ID: 22882907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Target-specific paramagnetic and superparamagnetic micelles for molecular MR imaging.
    Straathof R; Strijkers GJ; Nicolay K
    Methods Mol Biol; 2011; 771():691-715. PubMed ID: 21874503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An update on clinical applications of magnetic nanoparticles for increasing the resolution of magnetic resonance imaging.
    Zeinali Sehrig F; Majidi S; Asvadi S; Hsanzadeh A; Rasta SH; Emamverdy M; Akbarzadeh J; Jahangiri S; Farahkhiz S; Akbarzadeh A
    Artif Cells Nanomed Biotechnol; 2016 Nov; 44(7):1583-8. PubMed ID: 26584684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A universal scaling law to predict the efficiency of magnetic nanoparticles as MRI T(2)-contrast agents.
    Vuong QL; Berret JF; Fresnais J; Gossuin Y; Sandre O
    Adv Healthc Mater; 2012 Jul; 1(4):502-12. PubMed ID: 23184784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasmall water-soluble metal-iron oxide nanoparticles as T1-weighted contrast agents for magnetic resonance imaging.
    Zeng L; Ren W; Zheng J; Cui P; Wu A
    Phys Chem Chem Phys; 2012 Feb; 14(8):2631-6. PubMed ID: 22273844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging neuroinflammation after stroke: current status of cellular and molecular MRI strategies.
    Deddens LH; Van Tilborg GA; Mulder WJ; De Vries HE; Dijkhuizen RM
    Cerebrovasc Dis; 2012; 33(4):392-402. PubMed ID: 22456323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.