BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 24123969)

  • 1. Multiscale approach including microfibril scale to assess elastic constants of cortical bone based on neural network computation and homogenization method.
    Barkaoui A; Chamekh A; Merzouki T; Hambli R; Mkaddem A
    Int J Numer Method Biomed Eng; 2014 Mar; 30(3):318-38. PubMed ID: 24123969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multiscale modelling of bone ultrastructure elastic proprieties using finite elements simulation and neural network method.
    Barkaoui A; Tlili B; Vercher-Martínez A; Hambli R
    Comput Methods Programs Biomed; 2016 Oct; 134():69-78. PubMed ID: 27480733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiscale approach incorporating tropocollagen scale to assess the effect of molecular age-related modifications on elastic constants of cortical bone based on finite element and homogenization methods.
    Mouss ME; Merzouki T; Rekik A; Hambli R
    J Mech Behav Biomed Mater; 2022 Apr; 128():105130. PubMed ID: 35203021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiscale methodology for bone remodelling simulation using coupled finite element and neural network computation.
    Hambli R; Katerchi H; Benhamou CL
    Biomech Model Mechanobiol; 2011 Feb; 10(1):133-45. PubMed ID: 20506032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Apparent damage accumulation in cancellous bone using neural networks.
    Hambli R
    J Mech Behav Biomed Mater; 2011 Aug; 4(6):868-78. PubMed ID: 21616468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A three-scale finite element investigation into the effects of tissue mineralisation and lamellar organisation in human cortical and trabecular bone.
    Vaughan TJ; McCarthy CT; McNamara LM
    J Mech Behav Biomed Mater; 2012 Aug; 12():50-62. PubMed ID: 22659366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can the diverse elastic properties of trabecular and cortical bone be attributed to only a few tissue-independent phase properties and their interactions? Arguments from a multiscale approach.
    Hellmich C; Ulm FJ; Dormieux L
    Biomech Model Mechanobiol; 2004 Jun; 2(4):219-38. PubMed ID: 15054639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of the mineral staggering on the elastic properties of the mineralized collagen fibril in lamellar bone.
    Vercher-Martínez A; Giner E; Arango C; Fuenmayor FJ
    J Mech Behav Biomed Mater; 2015 Feb; 42():243-56. PubMed ID: 25498297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of neural networks and finite element computation for multiscale simulation of bone remodeling.
    Hambli R
    J Biomech Eng; 2010 Nov; 132(11):114502. PubMed ID: 21034154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physically based 3D finite element model of a single mineralized collagen microfibril.
    Hambli R; Barkaoui A
    J Theor Biol; 2012 May; 301():28-41. PubMed ID: 22365909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of porosity and mineral content on the elastic constants of cortical bone: a multiscale approach.
    Martínez-Reina J; Domínguez J; García-Aznar JM
    Biomech Model Mechanobiol; 2011 Jun; 10(3):309-22. PubMed ID: 20596743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stochastic multiscale modelling of cortical bone elasticity based on high-resolution imaging.
    Sansalone V; Gagliardi D; Desceliers C; Bousson V; Laredo JD; Peyrin F; Haïat G; Naili S
    Biomech Model Mechanobiol; 2016 Feb; 15(1):111-31. PubMed ID: 26202170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the effective elastic properties of the tendon-to-bone insertion: a multiscale modeling approach.
    Aghaei A; Bochud N; Rosi G; Naili S
    Biomech Model Mechanobiol; 2021 Apr; 20(2):433-448. PubMed ID: 33057842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Explicit expressions for the estimation of the elastic constants of lamellar bone as a function of the volumetric mineral content using a multi-scale approach.
    Vercher-Martínez A; Giner E; Belda R; Aigoun A; Fuenmayor FJ
    Biomech Model Mechanobiol; 2018 Apr; 17(2):449-464. PubMed ID: 29105006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A three-dimensional multiscale finite element model of bone coupling mineralized collagen fibril networks and lamellae.
    Wang Y; Ural A
    J Biomech; 2020 Nov; 112():110041. PubMed ID: 32950759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiscale damage and strength of lamellar bone modeled by cohesive finite elements.
    Hamed E; Jasiuk I
    J Mech Behav Biomed Mater; 2013 Dec; 28():94-110. PubMed ID: 23973769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new model to simulate the elastic properties of mineralized collagen fibril.
    Yuan F; Stock SR; Haeffner DR; Almer JD; Dunand DC; Brinson LC
    Biomech Model Mechanobiol; 2011 Apr; 10(2):147-60. PubMed ID: 20521160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can a continuous mineral foam explain the stiffening of aged bone tissue? A micromechanical approach to mineral fusion in musculoskeletal tissues.
    Penta R; Raum K; Grimal Q; Schrof S; Gerisch A
    Bioinspir Biomim; 2016 May; 11(3):035004. PubMed ID: 27194094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A finite element study evaluating the influence of mineralization distribution and content on the tensile mechanical response of mineralized collagen fibril networks.
    Wang Y; Ural A
    J Mech Behav Biomed Mater; 2019 Dec; 100():103361. PubMed ID: 31493689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo Type Simulations of Mineralized Collagen Fibril Based on Two Scale Asymptotic Homogenization.
    Awasthi A; Sharma R; Ghosh R
    J Biomech Eng; 2019 Apr; 141(4):. PubMed ID: 30615067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.