BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 24123985)

  • 1. Finite element methods to analyze helical stent expansion.
    Paryab N; Cronin DS; Lee-Sullivan P
    Int J Numer Method Biomed Eng; 2014 Mar; 30(3):339-52. PubMed ID: 24123985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design optimization of stent and its dilatation balloon using kriging surrogate model.
    Li H; Liu T; Wang M; Zhao D; Qiao A; Wang X; Gu J; Li Z; Zhu B
    Biomed Eng Online; 2017 Jan; 16(1):13. PubMed ID: 28086895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite element analysis and stent design: Reduction of dogboning.
    De Beule M; Van Impe R; Verhegghe B; Segers P; Verdonck P
    Technol Health Care; 2006; 14(4-5):233-41. PubMed ID: 17065746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of the transient expansion behavior and design optimization of coronary stents by finite element method.
    Wang WQ; Liang DK; Yang DZ; Qi M
    J Biomech; 2006; 39(1):21-32. PubMed ID: 16271584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental studies and numerical analysis of the inflation and interaction of vascular balloon catheter-stent systems.
    Kiousis DE; Wulff AR; Holzapfel GA
    Ann Biomed Eng; 2009 Feb; 37(2):315-30. PubMed ID: 19048377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational Bench Testing to Evaluate the Short-Term Mechanical Performance of a Polymeric Stent.
    Bobel AC; Petisco S; Sarasua JR; Wang W; McHugh PE
    Cardiovasc Eng Technol; 2015 Dec; 6(4):519-32. PubMed ID: 26577483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of material, coating, design and plaque composition on stent deployment inside a stenotic artery--finite element simulation.
    Schiavone A; Zhao LG; Abdel-Wahab AA
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():479-88. PubMed ID: 25063145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Finite element analysis of the expansion behavior of coronary stents].
    Wang W; Yang D; Qi M
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Dec; 23(6):1258-62, 1266. PubMed ID: 17228721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Computational Study of Mechanical Performance of Bioresorbable Polymeric Stents with Design Variations.
    Qiu TY; Zhao LG; Song M
    Cardiovasc Eng Technol; 2019 Mar; 10(1):46-60. PubMed ID: 30536211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An analysis of the contact between the stent and the artery using tube hydroforming simulation.
    Araújo R; Guimarães TA; Oliveira SA
    Int J Numer Method Biomed Eng; 2013 Nov; 29(11):1214-22. PubMed ID: 23813983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational Analysis of the Utilisation of the Shape Memory Effect and Balloon Expansion in Fully Polymeric Stent Deployment.
    Bobel AC; McHugh PE
    Cardiovasc Eng Technol; 2018 Mar; 9(1):60-72. PubMed ID: 29243163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A finite element strategy to investigate the free expansion behaviour of a biodegradable polymeric stent.
    Debusschere N; Segers P; Dubruel P; Verhegghe B; De Beule M
    J Biomech; 2015 Jul; 48(10):2012-8. PubMed ID: 25907549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical analysis of crimping and inflation process of balloon-expandable coronary stent using implicit solution.
    Bukala J; Kwiatkowski P; Malachowski J
    Int J Numer Method Biomed Eng; 2017 Dec; 33(12):. PubMed ID: 28425201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical study of the uniformity of balloon-expandable stent deployment.
    Mortier P; De Beule M; Carlier SG; Van Impe R; Verhegghe B; Verdonck P
    J Biomech Eng; 2008 Apr; 130(2):021018. PubMed ID: 18412505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Breaking the limit: mechanical characterization of overexpanded balloon expandable stents used in congenital heart disease.
    Bratincsak A; Moore JW; Gulker B; Choules B; Koren L; El-Said HG
    Congenit Heart Dis; 2015; 10(1):51-63. PubMed ID: 24725737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the effects of different strategies in modelling balloon-expandable stenting by means of finite element method.
    Gervaso F; Capelli C; Petrini L; Lattanzio S; Di Virgilio L; Migliavacca F
    J Biomech; 2008; 41(6):1206-12. PubMed ID: 18374340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite element analysis of balloon-expandable coronary stent deployment: influence of angioplasty balloon configuration.
    Martin D; Boyle F
    Int J Numer Method Biomed Eng; 2013 Nov; 29(11):1161-75. PubMed ID: 23696255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A numerical study on the effect of geometrical parameters and loading profile on the expansion of stent.
    Beigzadeh B; Mirmohammadi SA; Ayatollahi MR
    Biomed Mater Eng; 2017; 28(5):463-476. PubMed ID: 28854490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studying the non-uniform expansion of a stent influenced by the balloon.
    Yang J; Liang MB; Huang N; Liu YL
    J Med Eng Technol; 2010; 34(5-6):301-5. PubMed ID: 20459345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite element comparison of performance related characteristics of balloon expandable stents.
    Donnelly EW; Bruzzi MS; Connolley T; McHugh PE
    Comput Methods Biomech Biomed Engin; 2007 Apr; 10(2):103-10. PubMed ID: 18651276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.