These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
348 related articles for article (PubMed ID: 24124188)
1. Overexpression of ryanodine receptor type 1 enhances mitochondrial fragmentation and Ca2+-induced ATP production in cardiac H9c2 myoblasts. O-Uchi J; Jhun BS; Hurst S; Bisetto S; Gross P; Chen M; Kettlewell S; Park J; Oyamada H; Smith GL; Murayama T; Sheu SS Am J Physiol Heart Circ Physiol; 2013 Dec; 305(12):H1736-51. PubMed ID: 24124188 [TBL] [Abstract][Full Text] [Related]
2. Switch from ER-mitochondrial to SR-mitochondrial calcium coupling during muscle differentiation. Yi M; Weaver D; Eisner V; Várnai P; Hunyady L; Ma J; Csordás G; Hajnóczky G Cell Calcium; 2012 Nov; 52(5):355-65. PubMed ID: 22784666 [TBL] [Abstract][Full Text] [Related]
3. Molecular and functional identification of a mitochondrial ryanodine receptor in neurons. Jakob R; Beutner G; Sharma VK; Duan Y; Gross RA; Hurst S; Jhun BS; O-Uchi J; Sheu SS Neurosci Lett; 2014 Jul; 575():7-12. PubMed ID: 24861510 [TBL] [Abstract][Full Text] [Related]
4. Type 1 ryanodine receptor in cardiac mitochondria: transducer of excitation-metabolism coupling. Beutner G; Sharma VK; Lin L; Ryu SY; Dirksen RT; Sheu SS Biochim Biophys Acta; 2005 Nov; 1717(1):1-10. PubMed ID: 16246297 [TBL] [Abstract][Full Text] [Related]
5. Halothane modulation of skeletal muscle ryanodine receptors: dependence on Ca2+, Mg2+, and ATP. Diaz-Sylvester PL; Porta M; Copello JA Am J Physiol Cell Physiol; 2008 Apr; 294(4):C1103-12. PubMed ID: 18305228 [TBL] [Abstract][Full Text] [Related]
6. Skeletal and cardiac ryanodine receptors exhibit different responses to Ca2+ overload and luminal ca2+. Kong H; Wang R; Chen W; Zhang L; Chen K; Shimoni Y; Duff HJ; Chen SR Biophys J; 2007 Apr; 92(8):2757-70. PubMed ID: 17259277 [TBL] [Abstract][Full Text] [Related]
8. Dampened activity of ryanodine receptor channels in mutant skeletal muscle lacking TRIC-A. El-Ajouz S; Venturi E; Witschas K; Beech M; Wilson AD; Lindsay C; Eberhardt D; O'Brien F; Iida T; Nishi M; Takeshima H; Sitsapesan R J Physiol; 2017 Jul; 595(14):4769-4784. PubMed ID: 28387457 [TBL] [Abstract][Full Text] [Related]
9. A central core disease mutation in the Ca Chirasani VR; Xu L; Addis HG; Pasek DA; Dokholyan NV; Meissner G; Yamaguchi N Am J Physiol Cell Physiol; 2019 Aug; 317(2):C358-C365. PubMed ID: 31166712 [TBL] [Abstract][Full Text] [Related]
10. Two EF-hand motifs in ryanodine receptor calcium release channels contribute to isoform-specific regulation by calmodulin. Xu L; Gomez AC; Pasek DA; Meissner G; Yamaguchi N Cell Calcium; 2017 Sep; 66():62-70. PubMed ID: 28807150 [TBL] [Abstract][Full Text] [Related]
11. Malignant hyperthermia-associated mutations in the S2-S3 cytoplasmic loop of type 1 ryanodine receptor calcium channel impair calcium-dependent inactivation. Gomez AC; Holford TW; Yamaguchi N Am J Physiol Cell Physiol; 2016 Nov; 311(5):C749-C757. PubMed ID: 27558158 [TBL] [Abstract][Full Text] [Related]
12. Distinctive characteristics and functions of multiple mitochondrial Ca2+ influx mechanisms. Pan S; Ryu SY; Sheu SS Sci China Life Sci; 2011 Aug; 54(8):763-9. PubMed ID: 21786199 [TBL] [Abstract][Full Text] [Related]
13. Important Role of Sarcoplasmic Reticulum Ca Yang Z; Song T; Truong L; Reyes-García J; Wang L; Zheng YM; Wang YX Antioxid Redox Signal; 2020 Mar; 32(7):447-462. PubMed ID: 31456413 [No Abstract] [Full Text] [Related]
14. Increased RyR2 activity is exacerbated by calcium leak-induced mitochondrial ROS. Hamilton S; Terentyeva R; Martin B; Perger F; Li J; Stepanov A; Bonilla IM; Knollmann BC; Radwański PB; Györke S; Belevych AE; Terentyev D Basic Res Cardiol; 2020 May; 115(4):38. PubMed ID: 32444920 [TBL] [Abstract][Full Text] [Related]
15. Reduced threshold for store overload-induced Ca Chen W; Koop A; Liu Y; Guo W; Wei J; Wang R; MacLennan DH; Dirksen RT; Chen SRW Biochem J; 2017 Aug; 474(16):2749-2761. PubMed ID: 28687594 [TBL] [Abstract][Full Text] [Related]
16. RyR1-specific requirement for depolarization-induced Ca2+ sparks in urinary bladder smooth muscle. Fritz N; Morel JL; Jeyakumar LH; Fleischer S; Allen PD; Mironneau J; Macrez N J Cell Sci; 2007 Nov; 120(Pt 21):3784-91. PubMed ID: 17925380 [TBL] [Abstract][Full Text] [Related]
17. Efficient High-Throughput Screening by Endoplasmic Reticulum Ca Murayama T; Kurebayashi N; Ishigami-Yuasa M; Mori S; Suzuki Y; Akima R; Ogawa H; Suzuki J; Kanemaru K; Oyamada H; Kiuchi Y; Iino M; Kagechika H; Sakurai T Mol Pharmacol; 2018 Jul; 94(1):722-730. PubMed ID: 29674523 [TBL] [Abstract][Full Text] [Related]
18. Dantrolene inhibition of ryanodine receptor Ca2+ release channels. Molecular mechanism and isoform selectivity. Zhao F; Li P; Chen SR; Louis CF; Fruen BR J Biol Chem; 2001 Apr; 276(17):13810-6. PubMed ID: 11278295 [TBL] [Abstract][Full Text] [Related]
19. Expression levels of RyR1 and RyR3 control resting free Ca2+ in skeletal muscle. Perez CF; López JR; Allen PD Am J Physiol Cell Physiol; 2005 Mar; 288(3):C640-9. PubMed ID: 15548569 [TBL] [Abstract][Full Text] [Related]
20. Pancreatic β-cell Na+ channels control global Ca2+ signaling and oxidative metabolism by inducing Na+ and Ca2+ responses that are propagated into mitochondria. Nita II; Hershfinkel M; Kantor C; Rutter GA; Lewis EC; Sekler I FASEB J; 2014 Aug; 28(8):3301-12. PubMed ID: 24719357 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]