BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 24124360)

  • 1. Enhanced penetration into 3D cell culture using two and three layered gold nanoparticles.
    England CG; Priest T; Zhang G; Sun X; Patel DN; McNally LR; van Berkel V; Gobin AM; Frieboes HB
    Int J Nanomedicine; 2013; 8():3603-17. PubMed ID: 24124360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of Phosphatidylcholine-Coated Gold Nanoparticles in Orthotopic Pancreatic Adenocarcinoma using Hyperspectral Imaging.
    England CG; Huang JS; James KT; Zhang G; Gobin AM; Frieboes HB
    PLoS One; 2015; 10(6):e0129172. PubMed ID: 26046360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of Drug-Loaded Gold Nanoparticle Cytotoxicity as a Function of Tumor Vasculature-Induced Tissue Heterogeneity.
    Miller HA; Frieboes HB
    Ann Biomed Eng; 2019 Jan; 47(1):257-271. PubMed ID: 30298374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An interdisciplinary computational/experimental approach to evaluate drug-loaded gold nanoparticle tumor cytotoxicity.
    Curtis LT; England CG; Wu M; Lowengrub J; Frieboes HB
    Nanomedicine (Lond); 2016 Feb; 11(3):197-216. PubMed ID: 26829163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence-tagged gold nanoparticles for rapidly characterizing the size-dependent biodistribution in tumor models.
    Chou LY; Chan WC
    Adv Healthc Mater; 2012 Nov; 1(6):714-21. PubMed ID: 23184822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid Raman imaging of stable, functionalized nanoshells in mammalian cell cultures.
    Huang Y; Swarup VP; Bishnoi SW
    Nano Lett; 2009 Aug; 9(8):2914-20. PubMed ID: 19572746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of uptake and distribution of gold nanoparticles in solid tumors.
    England CG; Gobin AM; Frieboes HB
    Eur Phys J Plus; 2015 Nov; 130(11):. PubMed ID: 27014559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Critical parameters in the pegylation of gold nanoshells for biomedical applications: an in vitro macrophage study.
    Kah JC; Wong KY; Neoh KG; Song JH; Fu JW; Mhaisalkar S; Olivo M; Sheppard CJ
    J Drug Target; 2009 Apr; 17(3):181-93. PubMed ID: 19016072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ growth of hollow gold-silver nanoshells within porous silica offers tunable plasmonic extinctions and enhanced colloidal stability.
    Li CH; Jamison AC; Rittikulsittichai S; Lee TC; Lee TR
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19943-50. PubMed ID: 25321928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced retention and cellular uptake of nanoparticles in tumors by controlling their aggregation behavior.
    Liu X; Chen Y; Li H; Huang N; Jin Q; Ren K; Ji J
    ACS Nano; 2013 Jul; 7(7):6244-57. PubMed ID: 23799860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo tumor targeting of gold nanoparticles: effect of particle type and dosing strategy.
    Puvanakrishnan P; Park J; Chatterjee D; Krishnan S; Tunnell JW
    Int J Nanomedicine; 2012; 7():1251-8. PubMed ID: 22419872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice.
    Zhang G; Yang Z; Lu W; Zhang R; Huang Q; Tian M; Li L; Liang D; Li C
    Biomaterials; 2009 Apr; 30(10):1928-36. PubMed ID: 19131103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functionalized, Long-Circulating, and Ultrasmall Gold Nanocarriers for Overcoming the Barriers of Low Nanoparticle Delivery Efficiency and Poor Tumor Penetration.
    Lee KY; Lee GY; Lane LA; Li B; Wang J; Lu Q; Wang Y; Nie S
    Bioconjug Chem; 2017 Jan; 28(1):244-252. PubMed ID: 27341302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis, characterization and application of plasmonic hollow gold nanoshells in a photothermal therapy-New particles for theranostics.
    Grabowska-Jadach I; Kalinowska D; Drozd M; Pietrzak M
    Biomed Pharmacother; 2019 Mar; 111():1147-1155. PubMed ID: 30841428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced uptake and transport of PLGA-modified nanoparticles in cervical cancer.
    Sims LB; Curtis LT; Frieboes HB; Steinbach-Rankins JM
    J Nanobiotechnology; 2016 Apr; 14():33. PubMed ID: 27102372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions of Renal-Clearable Gold Nanoparticles with Tumor Microenvironments: Vasculature and Acidity Effects.
    Yu M; Zhou C; Liu L; Zhang S; Sun S; Hankins JD; Sun X; Zheng J
    Angew Chem Int Ed Engl; 2017 Apr; 56(15):4314-4319. PubMed ID: 28295960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of particle size and surface modification on gold nanoparticle penetration into human placental microtissues.
    Muoth C; Großgarten M; Karst U; Ruiz J; Astruc D; Moya S; Diener L; Grieder K; Wichser A; Jochum W; Wick P; Buerki-Thurnherr T
    Nanomedicine (Lond); 2017 May; 12(10):1119-1133. PubMed ID: 28447888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pegylated glucose gold nanoparticles for improved in-vivo bio-distribution and enhanced radiotherapy on cervical cancer.
    Geng F; Xing JZ; Chen J; Yang R; Hao Y; Song K; Kong B
    J Biomed Nanotechnol; 2014 Jul; 10(7):1205-16. PubMed ID: 24804541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration of Peptides for Enhanced Uptake of PEGylayed Gold Nanoparticles.
    Cruje C; Chithrani BD
    J Nanosci Nanotechnol; 2015 Mar; 15(3):2125-31. PubMed ID: 26413630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiparametric Assessment of Gold Nanoparticle Cytotoxicity in Cancerous and Healthy Cells: The Role of Size, Shape, and Surface Chemistry.
    Bhamidipati M; Fabris L
    Bioconjug Chem; 2017 Feb; 28(2):449-460. PubMed ID: 27992181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.