BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 24124524)

  • 1. Signals of historical interlocus gene conversion in human segmental duplications.
    Dumont BL; Eichler EE
    PLoS One; 2013; 8(10):e75949. PubMed ID: 24124524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interlocus gene conversion explains at least 2.7% of single nucleotide variants in human segmental duplications.
    Dumont BL
    BMC Genomics; 2015 Jun; 16(1):456. PubMed ID: 26077037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased mutation and gene conversion within human segmental duplications.
    Vollger MR; Dishuck PC; Harvey WT; DeWitt WS; Guitart X; Goldberg ME; Rozanski AN; Lucas J; Asri M; ; Munson KM; Lewis AP; Hoekzema K; Logsdon GA; Porubsky D; Paten B; Harris K; Hsieh P; Eichler EE
    Nature; 2023 May; 617(7960):325-334. PubMed ID: 37165237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide signatures of 'rearrangement hotspots' within segmental duplications in humans.
    Uddin M; Sturge M; Peddle L; O'Rielly DD; Rahman P
    PLoS One; 2011; 6(12):e28853. PubMed ID: 22194928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A common copy-number breakpoint of ERBB2 amplification in breast cancer colocalizes with a complex block of segmental duplications.
    Marotta M; Chen X; Inoshita A; Stephens R; Budd GT; Crowe JP; Lyons J; Kondratova A; Tubbs R; Tanaka H
    Breast Cancer Res; 2012 Nov; 14(6):R150. PubMed ID: 23181561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interplay of interlocus gene conversion and crossover in segmental duplications under a neutral scenario.
    Hartasánchez DA; Vallès-Codina O; Brasó-Vives M; Navarro A
    G3 (Bethesda); 2014 Jun; 4(8):1479-89. PubMed ID: 24906640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of recent segmental duplications in the bovine genome.
    Liu GE; Ventura M; Cellamare A; Chen L; Cheng Z; Zhu B; Li C; Song J; Eichler EE
    BMC Genomics; 2009 Dec; 10():571. PubMed ID: 19951423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-read sequence and assembly of segmental duplications.
    Vollger MR; Dishuck PC; Sorensen M; Welch AE; Dang V; Dougherty ML; Graves-Lindsay TA; Wilson RK; Chaisson MJP; Eichler EE
    Nat Methods; 2019 Jan; 16(1):88-94. PubMed ID: 30559433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Algebraic distribution of segmental duplication lengths in whole-genome sequence self-alignments.
    Gao K; Miller J
    PLoS One; 2011; 6(7):e18464. PubMed ID: 21779315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Very low rate of gene conversion in the yeast genome.
    Casola C; Conant GC; Hahn MW
    Mol Biol Evol; 2012 Dec; 29(12):3817-26. PubMed ID: 22844073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Phylogenetic Approach Finds Abundant Interlocus Gene Conversion in Yeast.
    Ji X; Griffing A; Thorne JL
    Mol Biol Evol; 2016 Sep; 33(9):2469-76. PubMed ID: 27297467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circular DNA intermediates in the generation of large human segmental duplications.
    Chicote JU; López-Sánchez M; Marquès-Bonet T; Callizo J; Pérez-Jurado LA; García-España A
    BMC Genomics; 2020 Aug; 21(1):593. PubMed ID: 32847497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of segmental duplications via duplication distance.
    Kahn CL; Raphael BJ
    Bioinformatics; 2008 Aug; 24(16):i133-8. PubMed ID: 18689814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Association of microsatellite pairs with segmental duplications in insect genomes.
    Behura SK; Severson DW
    BMC Genomics; 2013 Dec; 14():907. PubMed ID: 24359442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide mapping and assembly of structural variant breakpoints in the mouse genome.
    Quinlan AR; Clark RA; Sokolova S; Leibowitz ML; Zhang Y; Hurles ME; Mell JC; Hall IM
    Genome Res; 2010 May; 20(5):623-35. PubMed ID: 20308636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome maps across 26 human populations reveal population-specific patterns of structural variation.
    Levy-Sakin M; Pastor S; Mostovoy Y; Li L; Leung AKY; McCaffrey J; Young E; Lam ET; Hastie AR; Wong KHY; Chung CYL; Ma W; Sibert J; Rajagopalan R; Jin N; Chow EYC; Chu C; Poon A; Lin C; Naguib A; Wang WP; Cao H; Chan TF; Yip KY; Xiao M; Kwok PY
    Nat Commun; 2019 Mar; 10(1):1025. PubMed ID: 30833565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection and correction of false segmental duplications caused by genome mis-assembly.
    Kelley DR; Salzberg SL
    Genome Biol; 2010; 11(3):R28. PubMed ID: 20219098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resolving genomic disorder-associated breakpoints within segmental DNA duplications using massively parallel sequencing.
    Nuttle X; Itsara A; Shendure J; Eichler EE
    Nat Protoc; 2014; 9(6):1496-513. PubMed ID: 24874815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitive alignment using paralogous sequence variants improves long-read mapping and variant calling in segmental duplications.
    Prodanov T; Bansal V
    Nucleic Acids Res; 2020 Nov; 48(19):e114. PubMed ID: 33035301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional fates of human-specific segmental duplications in brain.
    Dougherty ML; Underwood JG; Nelson BJ; Tseng E; Munson KM; Penn O; Nowakowski TJ; Pollen AA; Eichler EE
    Genome Res; 2018 Oct; 28(10):1566-1576. PubMed ID: 30228200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.