These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 24124552)
1. The impact of fish predation and cyanobacteria on zooplankton size structure in 96 subtropical lakes. Zhang J; Xie P; Tao M; Guo L; Chen J; Li L; Xuezhen Zhang ; Zhang L PLoS One; 2013; 8(10):e76378. PubMed ID: 24124552 [TBL] [Abstract][Full Text] [Related]
2. Can top-down effects of planktivorous fish removal be used to mitigate cyanobacterial blooms in large subtropical highland lakes? Yin C; He W; Guo L; Gong L; Yang Y; Yang J; Ni L; Chen Y; Jeppesen E Water Res; 2022 Jun; 218():118483. PubMed ID: 35489149 [TBL] [Abstract][Full Text] [Related]
3. Linking cascading effects of fish predation and zooplankton grazing to reduced cyanobacterial biomass and toxin levels following biomanipulation. Ekvall MK; Urrutia-Cordero P; Hansson LA PLoS One; 2014; 9(11):e112956. PubMed ID: 25409309 [TBL] [Abstract][Full Text] [Related]
4. Influence of cyanobacterial blooms and environmental variation on zooplankton and eukaryotic phytoplankton in a large, shallow, eutrophic lake in China. Zhao K; Wang L; You Q; Pan Y; Liu T; Zhou Y; Zhang J; Pang W; Wang Q Sci Total Environ; 2021 Jun; 773():145421. PubMed ID: 33582356 [TBL] [Abstract][Full Text] [Related]
5. Fish-mediated plankton responses to increased temperature in subtropical aquatic mesocosm ecosystems: Implications for lake management. He H; Jin H; Jeppesen E; Li K; Liu Z; Zhang Y Water Res; 2018 Nov; 144():304-311. PubMed ID: 30071399 [TBL] [Abstract][Full Text] [Related]
6. Response of zooplankton to nutrient reduction and enhanced fish predation in a shallow eutrophic lake. Mao Z; Cao Y; Gu X; Zeng Q; Chen H; Jeppesen E Ecol Appl; 2023 Jan; 33(1):e2750. PubMed ID: 36151866 [TBL] [Abstract][Full Text] [Related]
7. A small omnivorous bitterling fish (Acheilognathus macropterus) facilitates dominance of cyanobacteria, rotifers and Limnodrilus in an outdoor mesocosm experiment. Yu J; Xia M; Kong M; He H; Guan B; Liu Z; Jeppesen E Environ Sci Pollut Res Int; 2020 Jul; 27(19):23862-23870. PubMed ID: 32301086 [TBL] [Abstract][Full Text] [Related]
8. Combined effects of turbulence and different predation regimes on zooplankton in highly colored water-implications for environmental change in lakes. Härkönen L; Pekcan-Hekim Z; Hellén N; Ojala A; Horppila J PLoS One; 2014; 9(11):e111942. PubMed ID: 25375952 [TBL] [Abstract][Full Text] [Related]
9. The feeding habits of small-bodied fishes mediate the strength of top-down effects on plankton and water quality in shallow subtropical lakes. Guo C; Li S; Ke J; Liao C; Hansen AG; Jeppesen E; Zhang T; Li W; Liu J Water Res; 2023 Apr; 233():119705. PubMed ID: 36801569 [TBL] [Abstract][Full Text] [Related]
10. Spatial and temporal variations reveal the response of zooplankton to cyanobacteria. Jia J; Shi W; Chen Q; Lauridsen TL Harmful Algae; 2017 Apr; 64():63-73. PubMed ID: 28427573 [TBL] [Abstract][Full Text] [Related]
11. [Predators, resources, and trophic chains in the regulation of plankton population and biomass in oligothrophic lakes]. Bizina EV Zh Obshch Biol; 2000; 61(6):601-15. PubMed ID: 11190562 [TBL] [Abstract][Full Text] [Related]
12. Zooplankton structure and potential food web interactions in the plankton of a subtropical chain-of-lakes. Havens KE ScientificWorldJournal; 2002 Apr; 2():926-42. PubMed ID: 12805947 [TBL] [Abstract][Full Text] [Related]
13. Effects of the manipulation of submerged macrophytes, large zooplankton, and nutrients on a cyanobacterial bloom: A mesocosm study in a tropical shallow reservoir. Amorim CA; Moura AN Environ Pollut; 2020 Oct; 265(Pt B):114997. PubMed ID: 32585551 [TBL] [Abstract][Full Text] [Related]
14. Short-term fish predation destroys resilience of zooplankton communities and prevents recovery of phytoplankton control by zooplankton grazing. Ersoy Z; Brucet S; Bartrons M; Mehner T PLoS One; 2019; 14(2):e0212351. PubMed ID: 30768619 [TBL] [Abstract][Full Text] [Related]
15. Changing Patterns and Driving Factors of Plankton Coupling Relationships in Lakes around the Yangtze River, China. Dong C; Guo X; Liu H; Chu Z; Wu T Microorganisms; 2024 Aug; 12(8):. PubMed ID: 39203541 [TBL] [Abstract][Full Text] [Related]
16. Cyanobacteria dominance influences resource use efficiency and community turnover in phytoplankton and zooplankton communities. Filstrup CT; Hillebrand H; Heathcote AJ; Harpole WS; Downing JA Ecol Lett; 2014 Apr; 17(4):464-74. PubMed ID: 24467318 [TBL] [Abstract][Full Text] [Related]
17. [Effects of large bio-manipulation fish pen on community structure of crustacean zooplankton in Meiliang Bay of Taihu Lake]. Ke ZX; Xie P; Guo LG; Xu J; Zhou Q Ying Yong Sheng Tai Xue Bao; 2012 Aug; 23(8):2270-6. PubMed ID: 23189709 [TBL] [Abstract][Full Text] [Related]
18. Predation by an omnivorous fish and food availability alter zooplankton functional diversity: a microcosm approach. Amaral DC; Dunck B; Braghin LSM; Fernandes UL; Bomfim FF; Bonecker CC; Lansac-Tôha FA An Acad Bras Cienc; 2021; 93(suppl 3):e20200778. PubMed ID: 34431864 [TBL] [Abstract][Full Text] [Related]
19. Horizontal distribution of pelagic crustacean zooplankton biomass and body size in contrasting habitat types in Lake Poyang, China. Liu B; Liu J; Jeppesen E; Chen Y; Liu X; Zhang W Environ Sci Pollut Res Int; 2019 Jan; 26(3):2270-2280. PubMed ID: 30465241 [TBL] [Abstract][Full Text] [Related]
20. Effects of Algicidal Macrophyte Metabolites on Cyanobacteria, Microcystins, Other Plankton, and Fish in Microcosms. Kurbatova S; Berezina N; Sharov A; Chernova E; Kurashov E; Krylova Y; Yershov I; Mavrin A; Otyukova N; Borisovskaya E; Fedorov R Toxins (Basel); 2023 Aug; 15(9):. PubMed ID: 37755955 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]