BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 24124577)

  • 1. Molecular dynamics simulations of double-stranded DNA in an explicit solvent model with the zero-dipole summation method.
    Arakawa T; Kamiya N; Nakamura H; Fukuda I
    PLoS One; 2013; 8(10):e76606. PubMed ID: 24124577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simple and accurate scheme to compute electrostatic interaction: zero-dipole summation technique for molecular system and application to bulk water.
    Fukuda I; Kamiya N; Yonezawa Y; Nakamura H
    J Chem Phys; 2012 Aug; 137(5):054314. PubMed ID: 22894355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Dynamics Simulations Accelerated by GPU for Biological Macromolecules with a Non-Ewald Scheme for Electrostatic Interactions.
    Mashimo T; Fukunishi Y; Kamiya N; Takano Y; Fukuda I; Nakamura H
    J Chem Theory Comput; 2013 Dec; 9(12):5599-609. PubMed ID: 26592294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the truncation of long-range electrostatic interactions in DNA.
    Norberg J; Nilsson L
    Biophys J; 2000 Sep; 79(3):1537-53. PubMed ID: 10969015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implicit Solvent Model for Million-Atom Atomistic Simulations: Insights into the Organization of 30-nm Chromatin Fiber.
    Izadi S; Anandakrishnan R; Onufriev AV
    J Chem Theory Comput; 2016 Dec; 12(12):5946-5959. PubMed ID: 27748599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 5-nanosecond molecular dynamics trajectory for B-DNA: analysis of structure, motions, and solvation.
    Young MA; Ravishanker G; Beveridge DL
    Biophys J; 1997 Nov; 73(5):2313-36. PubMed ID: 9370428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of Screening Functions as Cutoff-Based Alternatives to Ewald Summation in Molecular Dynamics Simulations Using Polarizable Force Fields.
    Vatamanu J; Borodin O; Bedrov D
    J Chem Theory Comput; 2018 Feb; 14(2):768-783. PubMed ID: 29294281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Importance of explicit salt ions for protein stability in molecular dynamics simulation.
    Ibragimova GT; Wade RC
    Biophys J; 1998 Jun; 74(6):2906-11. PubMed ID: 9635744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence-dependent elastic properties of DNA.
    Lankas F; Sponer J; Hobza P; Langowski J
    J Mol Biol; 2000 Jun; 299(3):695-709. PubMed ID: 10835278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recognition of RNA by amide modified backbone nucleic acids: molecular dynamics simulations of DNA-RNA hybrids in aqueous solution.
    Nina M; Fonné-Pfister R; Beaudegnies R; Chekatt H; Jung PM; Murphy-Kessabi F; De Mesmaeker A; Wendeborn S
    J Am Chem Soc; 2005 Apr; 127(16):6027-38. PubMed ID: 15839703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of atom- and group-based truncations on biomolecules simulated with reaction-field electrostatics.
    Ni B; Baumketner A
    J Mol Model; 2011 Nov; 17(11):2883-93. PubMed ID: 21311933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Restrained molecular dynamics of solvated duplex DNA using the particle mesh Ewald method.
    Konerding DE; Cheatham TE; Kollman PA; James TL
    J Biomol NMR; 1999 Feb; 13(2):119-31. PubMed ID: 10070753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics and continuum solvent studies of the stability of polyG-polyC and polyA-polyT DNA duplexes in solution.
    Cheatham TE; Srinivasan J; Case DA; Kollman PA
    J Biomol Struct Dyn; 1998 Oct; 16(2):265-80. PubMed ID: 9833666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A coarse-grained simulation study of the structures, energetics, and dynamics of linear and circular DNA with its ions.
    Naômé A; Laaksonen A; Vercauteren DP
    J Chem Theory Comput; 2015 Jun; 11(6):2813-26. PubMed ID: 26575574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics scheme for precise estimation of electrostatic interaction via zero-dipole summation principle.
    Fukuda I; Yonezawa Y; Nakamura H
    J Chem Phys; 2011 Apr; 134(16):164107. PubMed ID: 21528950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The polarizable point dipoles method with electrostatic damping: implementation on a model system.
    Sala J; Guàrdia E; Masia M
    J Chem Phys; 2010 Dec; 133(23):234101. PubMed ID: 21186852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Triplex hydration: nanosecond molecular dynamics simulation of the solvated triplex formed by mixed sequences.
    Ojha RP; Tiwari RK
    Nucleic Acids Res; 2003 Nov; 31(21):6373-80. PubMed ID: 14576325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural, dynamic, and electrostatic properties of fully hydrated DMPC bilayers from molecular dynamics simulations accelerated with graphical processing units (GPUs).
    Ganesan N; Bauer BA; Lucas TR; Patel S; Taufer M
    J Comput Chem; 2011 Nov; 32(14):2958-73. PubMed ID: 21793003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulations of a calmodulin-peptide complex in solution.
    Yang C; Kuczera K
    J Biomol Struct Dyn; 2002 Oct; 20(2):179-97. PubMed ID: 12354070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The zero-multipole summation method for estimating electrostatic interactions in molecular dynamics: analysis of the accuracy and application to liquid systems.
    Fukuda I; Kamiya N; Nakamura H
    J Chem Phys; 2014 May; 140(19):194307. PubMed ID: 24852538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.