These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 24124618)
1. Improving acetate tolerance of Escherichia coli by rewiring its global regulator cAMP receptor protein (CRP). Chong H; Yeow J; Wang I; Song H; Jiang R PLoS One; 2013; 8(10):e77422. PubMed ID: 24124618 [TBL] [Abstract][Full Text] [Related]
2. Improving ethanol tolerance of Escherichia coli by rewiring its global regulator cAMP receptor protein (CRP). Chong H; Huang L; Yeow J; Wang I; Zhang H; Song H; Jiang R PLoS One; 2013; 8(2):e57628. PubMed ID: 23469036 [TBL] [Abstract][Full Text] [Related]
3. Rewiring global regulator cAMP receptor protein (CRP) to improve E. coli tolerance towards low pH. Basak S; Geng H; Jiang R J Biotechnol; 2014 Mar; 173():68-75. PubMed ID: 24452100 [TBL] [Abstract][Full Text] [Related]
4. Random mutagenesis of global transcription factor cAMP receptor protein for improved osmotolerance. Zhang H; Chong H; Ching CB; Jiang R Biotechnol Bioeng; 2012 May; 109(5):1165-72. PubMed ID: 22179860 [TBL] [Abstract][Full Text] [Related]
5. cAMP receptor protein (CRP)-mediated resistance/tolerance in bacteria: mechanism and utilization in biotechnology. Geng H; Jiang R Appl Microbiol Biotechnol; 2015 Jun; 99(11):4533-43. PubMed ID: 25913005 [TBL] [Abstract][Full Text] [Related]
6. Enhancing E. coli isobutanol tolerance through engineering its global transcription factor cAMP receptor protein (CRP). Chong H; Geng H; Zhang H; Song H; Huang L; Jiang R Biotechnol Bioeng; 2014 Apr; 111(4):700-8. PubMed ID: 24203355 [TBL] [Abstract][Full Text] [Related]
7. Enhancing E. coli tolerance towards oxidative stress via engineering its global regulator cAMP receptor protein (CRP). Basak S; Jiang R PLoS One; 2012; 7(12):e51179. PubMed ID: 23251448 [TBL] [Abstract][Full Text] [Related]
8. cAMP-CRP acts as a key regulator for the viable but non-culturable state in Escherichia coli. Nosho K; Fukushima H; Asai T; Nishio M; Takamaru R; Kobayashi-Kirschvink KJ; Ogawa T; Hidaka M; Masaki H Microbiology (Reading); 2018 Mar; 164(3):410-419. PubMed ID: 29458560 [TBL] [Abstract][Full Text] [Related]
9. Positive Effect of Carbon Sources on Natural Transformation in Escherichia coli: Role of Low-Level Cyclic AMP (cAMP)-cAMP Receptor Protein in the Derepression of rpoS. Guo M; Wang H; Xie N; Xie Z J Bacteriol; 2015 Oct; 197(20):3317-28. PubMed ID: 26260461 [TBL] [Abstract][Full Text] [Related]
10. Engineering of global regulator cAMP receptor protein (CRP) in Escherichia coli for improved lycopene production. Huang L; Pu Y; Yang X; Zhu X; Cai J; Xu Z J Biotechnol; 2015 Apr; 199():55-61. PubMed ID: 25687103 [TBL] [Abstract][Full Text] [Related]
11. Catabolic regulation analysis of Escherichia coli and its crp, mlc, mgsA, pgi and ptsG mutants. Yao R; Hirose Y; Sarkar D; Nakahigashi K; Ye Q; Shimizu K Microb Cell Fact; 2011 Aug; 10():67. PubMed ID: 21831320 [TBL] [Abstract][Full Text] [Related]
12. A global regulatory role of gluconeogenic genes in Escherichia coli revealed by transcriptome network analysis. Kao KC; Tran LM; Liao JC J Biol Chem; 2005 Oct; 280(43):36079-87. PubMed ID: 16141204 [TBL] [Abstract][Full Text] [Related]
13. New insights on transcriptional responses of genes involved in carbon central metabolism, respiration and fermentation to low ATP levels in Escherichia coli. Soria S; de Anda R; Flores N; Romero-Garcia S; Gosset G; Bolívar F; Báez-Viveros JL J Basic Microbiol; 2013 Apr; 53(4):365-80. PubMed ID: 22914992 [TBL] [Abstract][Full Text] [Related]
14. [Regulation of global transcriptional factor cyclic AMP receptor protein and its metabolic engineering application in Escherichia coli]. Wang X; Lü J; Fu P Sheng Wu Gong Cheng Xue Bao; 2014 Nov; 30(11):1651-9. PubMed ID: 25985516 [TBL] [Abstract][Full Text] [Related]
15. Engineering global transcription factor cyclic AMP receptor protein of Escherichia coli for improved 1-butanol tolerance. Zhang H; Chong H; Ching CB; Song H; Jiang R Appl Microbiol Biotechnol; 2012 May; 94(4):1107-17. PubMed ID: 22466954 [TBL] [Abstract][Full Text] [Related]
16. Effect of vfr mutation on global gene expression and catabolite repression control of Pseudomonas aeruginosa. Suh SJ; Runyen-Janecky LJ; Maleniak TC; Hager P; MacGregor CH; Zielinski-Mozny NA; Phibbs PV; West SEH Microbiology (Reading); 2002 May; 148(Pt 5):1561-1569. PubMed ID: 11988531 [TBL] [Abstract][Full Text] [Related]
17. The cyclic AMP-cyclic AMP receptor protein complex regulates activity of the traJ promoter of the Escherichia coli conjugative plasmid pRK100. Starcic M; Zgur-Bertok D; Jordi BJ; Wösten MM; Gaastra W; van Putten JP J Bacteriol; 2003 Mar; 185(5):1616-23. PubMed ID: 12591879 [TBL] [Abstract][Full Text] [Related]
18. Absolute requirement of cyclic nucleotide in the activation of the G141Q mutant cAMP receptor protein from Escherichia coli. Cheng X; Lee JC J Biol Chem; 1994 Dec; 269(49):30781-4. PubMed ID: 7983007 [TBL] [Abstract][Full Text] [Related]
19. Mechanism of catabolite repression in the bgl operon of Escherichia coli: involvement of the anti-terminator BglG, CRP-cAMP and EIIAGlc in mediating glucose effect downstream of transcription initiation. Gulati A; Mahadevan S Genes Cells; 2000 Apr; 5(4):239-50. PubMed ID: 10792463 [TBL] [Abstract][Full Text] [Related]
20. Circuitry Linking the Catabolite Repression and Csr Global Regulatory Systems of Escherichia coli. Pannuri A; Vakulskas CA; Zere T; McGibbon LC; Edwards AN; Georgellis D; Babitzke P; Romeo T J Bacteriol; 2016 Nov; 198(21):3000-3015. PubMed ID: 27551019 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]