BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 24124922)

  • 1. Stomatal optimisation in relation to atmospheric CO2.
    Buckley TN; Schymanski SJ
    New Phytol; 2014 Jan; 201(2):372-377. PubMed ID: 24124922
    [No Abstract]   [Full Text] [Related]  

  • 2. A stomatal optimization theory to describe the effects of atmospheric CO2 on leaf photosynthesis and transpiration.
    Katul G; Manzoni S; Palmroth S; Oren R
    Ann Bot; 2010 Mar; 105(3):431-42. PubMed ID: 19995810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorometric Measurement of Individual Stomata Activity and Transpiration via a "Brush-on", Water-Responsive Polymer.
    Seo M; Park DH; Lee CW; Jaworski J; Kim JM
    Sci Rep; 2016 Aug; 6():32394. PubMed ID: 27578430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Opinion: stomatal responses to light and CO(2) depend on the mesophyll.
    Mott KA
    Plant Cell Environ; 2009 Nov; 32(11):1479-86. PubMed ID: 19627565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of instantaneous and growth CO
    Mizokami Y; Noguchi K; Kojima M; Sakakibara H; Terashima I
    Plant Cell Environ; 2019 Apr; 42(4):1257-1269. PubMed ID: 30468514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hoechst-tagged Fluorescein Diacetate for the Fluorescence Imaging-based Assessment of Stomatal Dynamics in Arabidopsis thaliana.
    Takaoka Y; Miyagawa S; Nakamura A; Egoshi S; Tsukiji S; Ueda M
    Sci Rep; 2020 Mar; 10(1):5333. PubMed ID: 32210301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stomatal Function across Temporal and Spatial Scales: Deep-Time Trends, Land-Atmosphere Coupling and Global Models.
    Franks PJ; Berry JA; Lombardozzi DL; Bonan GB
    Plant Physiol; 2017 Jun; 174(2):583-602. PubMed ID: 28446638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is Amphistomy an Adaptation to High Light? Optimality Models of Stomatal Traits along Light Gradients.
    Muir CD
    Integr Comp Biol; 2019 Sep; 59(3):571-584. PubMed ID: 31141118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The slope of assimilation rate against stomatal conductance should not be used as a measure of water use efficiency or stomatal control over assimilation.
    Bellasio C
    Photosynth Res; 2023 Dec; 158(3):195-199. PubMed ID: 37902923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stomatal numbers, leaf and canopy conductance, and the control of transpiration.
    Miglietta F; Peressotti A; Viola R; Körner C; Amthor JS
    Proc Natl Acad Sci U S A; 2011 Jul; 108(28):E275; author reply E276. PubMed ID: 21700887
    [No Abstract]   [Full Text] [Related]  

  • 11. Towards a unified theory of plant photosynthesis and hydraulics.
    Joshi J; Stocker BD; Hofhansl F; Zhou S; Dieckmann U; Prentice IC
    Nat Plants; 2022 Nov; 8(11):1304-1316. PubMed ID: 36303010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gas valves, forests and global change: a commentary on Jarvis (1976) 'The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field'.
    Beerling DJ
    Philos Trans R Soc Lond B Biol Sci; 2015 Apr; 370(1666):. PubMed ID: 25750234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of the mesophyll on stomatal responses in amphistomatous leaves.
    Mott KA; Peak D
    Plant Cell Environ; 2018 Dec; 41(12):2835-2843. PubMed ID: 30073677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into the Molecular Mechanisms of CO
    Zhang J; De-Oliveira-Ceciliato P; Takahashi Y; Schulze S; Dubeaux G; Hauser F; Azoulay-Shemer T; Tõldsepp K; Kollist H; Rappel WJ; Schroeder JI
    Curr Biol; 2018 Dec; 28(23):R1356-R1363. PubMed ID: 30513335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lower responsiveness of canopy evapotranspiration rate than of leaf stomatal conductance to open-air CO2 elevation in rice.
    Shimono H; Nakamura H; Hasegawa T; Okada M
    Glob Chang Biol; 2013 Aug; 19(8):2444-53. PubMed ID: 23564676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generalized hydromechanical model for stomatal responses to hydraulic perturbations.
    Kwon HW; Choi MY
    J Theor Biol; 2014 Jan; 340():119-30. PubMed ID: 24060618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2 : evidence from carbon isotope discrimination in paleo and CO2 enrichment studies.
    Voelker SL; Brooks JR; Meinzer FC; Anderson R; Bader MK; Battipaglia G; Becklin KM; Beerling D; Bert D; Betancourt JL; Dawson TE; Domec JC; Guyette RP; Körner C; Leavitt SW; Linder S; Marshall JD; Mildner M; Ogée J; Panyushkina I; Plumpton HJ; Pregitzer KS; Saurer M; Smith AR; Siegwolf RT; Stambaugh MC; Talhelm AF; Tardif JC; Van de Water PK; Ward JK; Wingate L
    Glob Chang Biol; 2016 Feb; 22(2):889-902. PubMed ID: 26391334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Testing a vapour-phase model of stomatal responses to humidity.
    Mott KA; Peak D
    Plant Cell Environ; 2013 May; 36(5):936-44. PubMed ID: 23072325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost.
    Sperry JS; Venturas MD; Anderegg WRL; Mencuccini M; Mackay DS; Wang Y; Love DM
    Plant Cell Environ; 2017 Jun; 40(6):816-830. PubMed ID: 27764894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increasing atmospheric CO2 and canopy temperature induces anatomical and physiological changes in leaves of the C4 forage species Panicum maximum.
    Habermann E; San Martin JAB; Contin DR; Bossan VP; Barboza A; Braga MR; Groppo M; Martinez CA
    PLoS One; 2019; 14(2):e0212506. PubMed ID: 30779815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.