These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 24124992)
1. Nanosheet-assembled NiO microstructures for high-performance supercapacitors. Purushothaman KK; Babu IM; Sethuraman B; Muralidharan G ACS Appl Mater Interfaces; 2013 Nov; 5(21):10767-73. PubMed ID: 24124992 [TBL] [Abstract][Full Text] [Related]
2. Few-layered MoSe2 nanosheets as an advanced electrode material for supercapacitors. Balasingam SK; Lee JS; Jun Y Dalton Trans; 2015 Sep; 44(35):15491-8. PubMed ID: 26239099 [TBL] [Abstract][Full Text] [Related]
3. Facile Synthesis of Hierarchical Mesoporous Honeycomb-like NiO for Aqueous Asymmetric Supercapacitors. Ren X; Guo C; Xu L; Li T; Hou L; Wei Y ACS Appl Mater Interfaces; 2015 Sep; 7(36):19930-40. PubMed ID: 26301430 [TBL] [Abstract][Full Text] [Related]
4. Influence of vanadium doping on the electrochemical performance of nickel oxide in supercapacitors. Park HW; Na BK; Cho BW; Park SM; Roh KC Phys Chem Chem Phys; 2013 Oct; 15(40):17626-35. PubMed ID: 24036916 [TBL] [Abstract][Full Text] [Related]
5. Electroless fabrication and supercapacitor performance of CNT@NiO-nanosheet composite nanotubes. Yu W; Li BQ; Ding SJ Nanotechnology; 2016 Feb; 27(7):075605. PubMed ID: 26789593 [TBL] [Abstract][Full Text] [Related]
6. CoNi(2)S(4) nanosheet arrays supported on nickel foams with ultrahigh capacitance for aqueous asymmetric supercapacitor applications. Hu W; Chen R; Xie W; Zou L; Qin N; Bao D ACS Appl Mater Interfaces; 2014 Nov; 6(21):19318-26. PubMed ID: 25322454 [TBL] [Abstract][Full Text] [Related]
7. Enhanced performance of multi-dimensional CoS nanoflake/NiO nanosheet architecture with synergetic effect for asymmetric supercapacitor. Yang Y; Li S; Liu F; Wen J; Zhang N; Wang S; Liu K Nanotechnology; 2018 Nov; 29(45):455401. PubMed ID: 30156189 [TBL] [Abstract][Full Text] [Related]
8. Hydrogenated NiO nanoblock architecture for high performance pseudocapacitor. Singh AK; Sarkar D; Khan GG; Mandal K ACS Appl Mater Interfaces; 2014 Apr; 6(7):4684-92. PubMed ID: 24601472 [TBL] [Abstract][Full Text] [Related]
9. Construction of hierarchical Co Wang J; Huang Y; Han X; Zhang S; Wang M; Yan J; Chen C; Zong M J Colloid Interface Sci; 2021 Dec; 603():440-449. PubMed ID: 34197992 [TBL] [Abstract][Full Text] [Related]
10. Facile synthesis of Al-doped NiO nanosheet arrays for high-performance supercapacitors. Chen J; Peng X; Song L; Zhang L; Liu X; Luo J R Soc Open Sci; 2018 Nov; 5(11):180842. PubMed ID: 30564394 [TBL] [Abstract][Full Text] [Related]
11. Rational Design of Self-Supported Ni Chen JS; Guan C; Gui Y; Blackwood DJ ACS Appl Mater Interfaces; 2017 Jan; 9(1):496-504. PubMed ID: 27976843 [TBL] [Abstract][Full Text] [Related]
12. Rational design of asymmetric supercapacitors Fan M; Zeng X; Yang X; Zhang X; Ren B RSC Adv; 2019 Dec; 9(72):42543-42553. PubMed ID: 35542868 [TBL] [Abstract][Full Text] [Related]
13. Three-dimensional cobalt oxide microstructures with brush-like morphology via surfactant-dependent assembly. Dam DT; Lee JM ACS Appl Mater Interfaces; 2014 Dec; 6(23):20729-37. PubMed ID: 25415605 [TBL] [Abstract][Full Text] [Related]
14. Transition metal oxide and graphene nanocomposites for high-performance electrochemical capacitors. Zhang W; Liu F; Li Q; Shou Q; Cheng J; Zhang L; Nelson BJ; Zhang X Phys Chem Chem Phys; 2012 Dec; 14(47):16331-7. PubMed ID: 23132379 [TBL] [Abstract][Full Text] [Related]