These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 24125142)

  • 1. Automated chart review for asthma cohort identification using natural language processing: an exploratory study.
    Wu ST; Sohn S; Ravikumar KE; Wagholikar K; Jonnalagadda SR; Liu H; Juhn YJ
    Ann Allergy Asthma Immunol; 2013 Nov; 111(5):364-9. PubMed ID: 24125142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural Language Processing for Asthma Ascertainment in Different Practice Settings.
    Wi CI; Sohn S; Ali M; Krusemark E; Ryu E; Liu H; Juhn YJ
    J Allergy Clin Immunol Pract; 2018; 6(1):126-131. PubMed ID: 28634104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated chart review utilizing natural language processing algorithm for asthma predictive index.
    Kaur H; Sohn S; Wi CI; Ryu E; Park MA; Bachman K; Kita H; Croghan I; Castro-Rodriguez JA; Voge GA; Liu H; Juhn YJ
    BMC Pulm Med; 2018 Feb; 18(1):34. PubMed ID: 29439692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of a Natural Language Processing Algorithm to Asthma Ascertainment. An Automated Chart Review.
    Wi CI; Sohn S; Rolfes MC; Seabright A; Ryu E; Voge G; Bachman KA; Park MA; Kita H; Croghan IT; Liu H; Juhn YJ
    Am J Respir Crit Care Med; 2017 Aug; 196(4):430-437. PubMed ID: 28375665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and Evaluation of a Natural Language Processing Annotation Tool to Facilitate Phenotyping of Cognitive Status in Electronic Health Records: Diagnostic Study.
    Noori A; Magdamo C; Liu X; Tyagi T; Li Z; Kondepudi A; Alabsi H; Rudmann E; Wilcox D; Brenner L; Robbins GK; Moura L; Zafar S; Benson NM; Hsu J; R Dickson J; Serrano-Pozo A; Hyman BT; Blacker D; Westover MB; Mukerji SS; Das S
    J Med Internet Res; 2022 Aug; 24(8):e40384. PubMed ID: 36040790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ascertainment of Delirium Status Using Natural Language Processing From Electronic Health Records.
    Fu S; Lopes GS; Pagali SR; Thorsteinsdottir B; LeBrasseur NK; Wen A; Liu H; Rocca WA; Olson JE; St Sauver J; Sohn S
    J Gerontol A Biol Sci Med Sci; 2022 Mar; 77(3):524-530. PubMed ID: 35239951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using natural language processing to identify opioid use disorder in electronic health record data.
    Singleton J; Li C; Akpunonu PD; Abner EL; Kucharska-Newton AM
    Int J Med Inform; 2023 Feb; 170():104963. PubMed ID: 36521420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discerning tumor status from unstructured MRI reports--completeness of information in existing reports and utility of automated natural language processing.
    Cheng LT; Zheng J; Savova GK; Erickson BJ
    J Digit Imaging; 2010 Apr; 23(2):119-32. PubMed ID: 19484309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expert artificial intelligence-based natural language processing characterises childhood asthma.
    Seol HY; Rolfes MC; Chung W; Sohn S; Ryu E; Park MA; Kita H; Ono J; Croghan I; Armasu SM; Castro-Rodriguez JA; Weston JD; Liu H; Juhn Y
    BMJ Open Respir Res; 2020 Feb; 7(1):. PubMed ID: 33371009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Natural Language Processing Combined with ICD-9-CM Codes as a Novel Method to Study the Epidemiology of Allergic Drug Reactions.
    Banerji A; Lai KH; Li Y; Saff RR; Camargo CA; Blumenthal KG; Zhou L
    J Allergy Clin Immunol Pract; 2020 Mar; 8(3):1032-1038.e1. PubMed ID: 31857264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial Intelligence Assesses Clinicians' Adherence to Asthma Guidelines Using Electronic Health Records.
    Sagheb E; Wi CI; Yoon J; Seol HY; Shrestha P; Ryu E; Park M; Yawn B; Liu H; Homme J; Juhn Y; Sohn S
    J Allergy Clin Immunol Pract; 2022 Apr; 10(4):1047-1056.e1. PubMed ID: 34800704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ascertaining Framingham heart failure phenotype from inpatient electronic health record data using natural language processing: a multicentre Atherosclerosis Risk in Communities (ARIC) validation study.
    Moore CR; Jain S; Haas S; Yadav H; Whitsel E; Rosamand W; Heiss G; Kucharska-Newton AM
    BMJ Open; 2021 Jun; 11(6):e047356. PubMed ID: 34127492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural Language Processing to Identify Advance Care Planning Documentation in a Multisite Pragmatic Clinical Trial.
    Lindvall C; Deng CY; Moseley E; Agaronnik N; El-Jawahri A; Paasche-Orlow MK; Lakin JR; Volandes A; Tulsky TAIJA
    J Pain Symptom Manage; 2022 Jan; 63(1):e29-e36. PubMed ID: 34271146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using Clinical Notes and Natural Language Processing for Automated HIV Risk Assessment.
    Feller DJ; Zucker J; Yin MT; Gordon P; Elhadad N
    J Acquir Immune Defic Syndr; 2018 Feb; 77(2):160-166. PubMed ID: 29084046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerebrovascular disease case identification in inpatient electronic medical record data using natural language processing.
    Pan J; Zhang Z; Peters SR; Vatanpour S; Walker RL; Lee S; Martin EA; Quan H
    Brain Inform; 2023 Sep; 10(1):22. PubMed ID: 37658963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying Cases of Shoulder Injury Related to Vaccine Administration (SIRVA) in the United States: Development and Validation of a Natural Language Processing Method.
    Zheng C; Duffy J; Liu IA; Sy LS; Navarro RA; Kim SS; Ryan DS; Chen W; Qian L; Mercado C; Jacobsen SJ
    JMIR Public Health Surveill; 2022 May; 8(5):e30426. PubMed ID: 35608886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying Information Gaps in Electronic Health Records by Using Natural Language Processing: Gynecologic Surgery History Identification.
    Moon S; Carlson LA; Moser ED; Agnikula Kshatriya BS; Smith CY; Rocca WA; Gazzuola Rocca L; Bielinski SJ; Liu H; Larson NB
    J Med Internet Res; 2022 Jan; 24(1):e29015. PubMed ID: 35089141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated feature selection of predictors in electronic medical records data.
    Gronsbell J; Minnier J; Yu S; Liao K; Cai T
    Biometrics; 2019 Mar; 75(1):268-277. PubMed ID: 30353541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Screening pregnant women for suicidal behavior in electronic medical records: diagnostic codes vs. clinical notes processed by natural language processing.
    Zhong QY; Karlson EW; Gelaye B; Finan S; Avillach P; Smoller JW; Cai T; Williams MA
    BMC Med Inform Decis Mak; 2018 May; 18(1):30. PubMed ID: 29843698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural language processing of electronic health records is superior to billing codes to identify symptom burden in hemodialysis patients.
    Chan L; Beers K; Yau AA; Chauhan K; Duffy Á; Chaudhary K; Debnath N; Saha A; Pattharanitima P; Cho J; Kotanko P; Federman A; Coca SG; Van Vleck T; Nadkarni GN
    Kidney Int; 2020 Feb; 97(2):383-392. PubMed ID: 31883805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.