These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 24125210)

  • 1. Quest for absolute zero in the presence of external noise.
    Torrontegui E; Kosloff R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032103. PubMed ID: 24125210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal performance of reciprocating demagnetization quantum refrigerators.
    Kosloff R; Feldmann T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011134. PubMed ID: 20866592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal efficiency of a noisy quantum heat engine.
    Stefanatos D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012119. PubMed ID: 25122263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal analysis on the performance of an irreversible harmonic quantum Brayton refrigeration cycle.
    Lin B; Chen J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):056117. PubMed ID: 14682856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum refrigerators and the third law of thermodynamics.
    Levy A; Alicki R; Kosloff R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061126. PubMed ID: 23005070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unified trade-off optimization of quantum harmonic Otto engine and refrigerator.
    Singh V; Singh S; Abah O; Müstecaplıoğlu ÖE
    Phys Rev E; 2022 Aug; 106(2-1):024137. PubMed ID: 36110016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamical analysis of a quantum heat engine based on harmonic oscillators.
    Insinga A; Andresen B; Salamon P
    Phys Rev E; 2016 Jul; 94(1-1):012119. PubMed ID: 27575089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum lubrication: suppression of friction in a first-principles four-stroke heat engine.
    Feldmann T; Kosloff R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):025107. PubMed ID: 16605384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum heat engines: Limit cycles and exceptional points.
    Insinga A; Andresen B; Salamon P; Kosloff R
    Phys Rev E; 2018 Jun; 97(6-1):062153. PubMed ID: 30011553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Harmonic quantum heat devices: optimum-performance regimes.
    Sánchez-Salas N; Hernández AC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046134. PubMed ID: 15600487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum absorption refrigerator.
    Levy A; Kosloff R
    Phys Rev Lett; 2012 Feb; 108(7):070604. PubMed ID: 22401189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficiency at maximum power of a quantum heat engine based on two coupled oscillators.
    Wang J; Ye Z; Lai Y; Li W; He J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062134. PubMed ID: 26172688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational Issues of Quantum Heat Engines with Non-Harmonic Working Medium.
    Insinga AR; Andresen B; Salamon P
    Entropy (Basel); 2024 Apr; 26(5):. PubMed ID: 38785608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stochastic bifurcation in noise-driven lasers and Hopf oscillators.
    Wieczorek S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 2):036209. PubMed ID: 19392037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance analysis of an irreversible quantum heat engine working with harmonic oscillators.
    Lin B; Chen J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046105. PubMed ID: 12786434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Quantum Friction and Optimal Finite-Time Performance of the Quantum Otto Cycle.
    Insinga AR
    Entropy (Basel); 2020 Sep; 22(9):. PubMed ID: 33286828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance bounds of nonadiabatic quantum harmonic Otto engine and refrigerator under a squeezed thermal reservoir.
    Singh V; Müstecaplıoğlu ÖE
    Phys Rev E; 2020 Dec; 102(6-1):062123. PubMed ID: 33466082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance of discrete heat engines and heat pumps in finite time.
    Feldmann T; Kosloff R
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 May; 61(5A):4774-90. PubMed ID: 11031518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum four-stroke heat engine: thermodynamic observables in a model with intrinsic friction.
    Feldmann T; Kosloff R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 2):016101. PubMed ID: 12935194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum Brayton cycle with coupled systems as working substance.
    Huang XL; Wang LC; Yi XX
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012144. PubMed ID: 23410319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.