BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 24125242)

  • 1. Transport and collision dynamics in periodic asymmetric obstacle arrays: rational design of microfluidic rare-cell immunocapture devices.
    Gleghorn JP; Smith JP; Kirby BJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032136. PubMed ID: 24125242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collision rates for rare cell capture in periodic obstacle arrays strongly depend on density of cell suspension.
    Cimrák I
    Comput Methods Biomech Biomed Engin; 2016 Nov; 19(14):1525-30. PubMed ID: 27023645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A transfer function approach for predicting rare cell capture microdevice performance.
    Smith JP; Kirby BJ
    Biomed Microdevices; 2015; 17(3):9956. PubMed ID: 25971361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parametric control of collision rates and capture rates in geometrically enhanced differential immunocapture (GEDI) microfluidic devices for rare cell capture.
    Smith JP; Lannin TB; Syed Y; Santana SM; Kirby BJ
    Biomed Microdevices; 2014 Feb; 16(1):143-51. PubMed ID: 24078270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-Way Particle Transport Using Oscillatory Flow in Asymmetric Traps.
    Lee J; Burns MA
    Small; 2018 Mar; 14(9):. PubMed ID: 29377529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic transport in microdevices for rare cell capture.
    Smith JP; Barbati AC; Santana SM; Gleghorn JP; Kirby BJ
    Electrophoresis; 2012 Nov; 33(21):3133-42. PubMed ID: 23065634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Porous microwells for geometry-selective, large-scale microparticle arrays.
    Kim JJ; Bong KW; Reátegui E; Irimia D; Doyle PS
    Nat Mater; 2017 Jan; 16(1):139-146. PubMed ID: 27595351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional focusing of red blood cells in microchannel flows for bio-sensing applications.
    Kim YW; Yoo JY
    Biosens Bioelectron; 2009 Aug; 24(12):3677-82. PubMed ID: 19559591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical and experimental evaluation of microfluidic sorting devices.
    Taylor JK; Ren CL; Stubley GD
    Biotechnol Prog; 2008; 24(4):981-91. PubMed ID: 19194907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Free flow acoustophoresis: microfluidic-based mode of particle and cell separation.
    Petersson F; Aberg L; Swärd-Nilsson AM; Laurell T
    Anal Chem; 2007 Jul; 79(14):5117-23. PubMed ID: 17569501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Horizontal nDEP cages within open microwell arrays for precise positioning of cells and particles.
    Lombardini M; Bocchi M; Rambelli L; Giulianelli L; Guerrieri R
    Lab Chip; 2010 May; 10(9):1204-7. PubMed ID: 20390141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping.
    Applegate RW; Squier J; Vestad T; Oakey J; Marr DW; Bado P; Dugan MA; Said AA
    Lab Chip; 2006 Mar; 6(3):422-6. PubMed ID: 16511626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reservoir-based dielectrophoresis for microfluidic particle separation by charge.
    Patel S; Qian S; Xuan X
    Electrophoresis; 2013 Apr; 34(7):961-8. PubMed ID: 23161644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sheathless hydrophoretic particle focusing in a microchannel with exponentially increasing obstacle arrays.
    Choi S; Park JK
    Anal Chem; 2008 Apr; 80(8):3035-9. PubMed ID: 18355090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of disorder on DNA electrophoresis in a microfluidic array of obstacles.
    Mohan A; Doyle PS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):040903. PubMed ID: 17994929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anisotropic permeability in deterministic lateral displacement arrays.
    Vernekar R; Krüger T; Loutherback K; Morton K; W Inglis D
    Lab Chip; 2017 Sep; 17(19):3318-3330. PubMed ID: 28861573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size-tunable microvortex capture of rare cells.
    Khojah R; Stoutamore R; Di Carlo D
    Lab Chip; 2017 Jul; 17(15):2542-2549. PubMed ID: 28613306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous manipulation and separation of particles using combined obstacle- and curvature-induced direct current dielectrophoresis.
    Li M; Li S; Li W; Wen W; Alici G
    Electrophoresis; 2013 Apr; 34(7):952-60. PubMed ID: 23436345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical Study of Pillar Shapes in Deterministic Lateral Displacement Microfluidic Arrays for Spherical Particle Separation.
    Wei J; Song H; Shen Z; He Y; Xu X; Zhang Y; Li BN
    IEEE Trans Nanobioscience; 2015 Sep; 14(6):660-7. PubMed ID: 26011890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.