These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

397 related articles for article (PubMed ID: 24125265)

  • 41. Self-propelled torus colloids.
    Wang J; Huang MJ; Kapral R
    J Chem Phys; 2020 Jul; 153(1):014902. PubMed ID: 32640804
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Following fluctuating signs: Anomalous active superdiffusion of swimmers in anisotropic media.
    Toner J; Löwen H; Wensink HH
    Phys Rev E; 2016 Jun; 93(6):062610. PubMed ID: 27415323
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Brownian particles on rough substrates: relation between intermediate subdiffusion and asymptotic long-time diffusion.
    Hanes RD; Schmiedeberg M; Egelhaaf SU
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062133. PubMed ID: 24483412
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Active Brownian motion with memory delay induced by a viscoelastic medium.
    Sprenger AR; Bair C; Löwen H
    Phys Rev E; 2022 Apr; 105(4-1):044610. PubMed ID: 35590653
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hydrodynamic simulations of self-phoretic microswimmers.
    Yang M; Wysocki A; Ripoll M
    Soft Matter; 2014 Sep; 10(33):6208-18. PubMed ID: 25012361
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Importance of particle tracking and calculating the mean-squared displacement in distinguishing nanopropulsion from other processes.
    Dunderdale G; Ebbens S; Fairclough P; Howse J
    Langmuir; 2012 Jul; 28(30):10997-1006. PubMed ID: 22731393
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Self-similar Gaussian processes for modeling anomalous diffusion.
    Lim SC; Muniandy SV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 1):021114. PubMed ID: 12241157
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Active Brownian motion tunable by light.
    Buttinoni I; Volpe G; Kümmel F; Volpe G; Bechinger C
    J Phys Condens Matter; 2012 Jul; 24(28):284129. PubMed ID: 22739052
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Brownian motion of boomerang colloidal particles.
    Chakrabarty A; Konya A; Wang F; Selinger JV; Sun K; Wei QH
    Phys Rev Lett; 2013 Oct; 111(16):160603. PubMed ID: 24182246
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Collective behavior of penetrable self-propelled rods in two dimensions.
    Abkenar M; Marx K; Auth T; Gompper G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062314. PubMed ID: 24483451
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Measurement of the translational and rotational Brownian motion of individual particles in a rarefied gas.
    Blum J; Bruns S; Rademacher D; Voss A; Willenberg B; Krause M
    Phys Rev Lett; 2006 Dec; 97(23):230601. PubMed ID: 17280186
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Anomalous diffusion of active Brownian particles cross-linked to a networked polymer: Langevin dynamics simulation and theory.
    Joo S; Durang X; Lee OC; Jeon JH
    Soft Matter; 2020 Oct; 16(40):9188-9201. PubMed ID: 32840541
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Brownian motion of an ellipsoid.
    Han Y; Alsayed AM; Nobili M; Zhang J; Lubensky TC; Yodh AG
    Science; 2006 Oct; 314(5799):626-30. PubMed ID: 17068256
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dynamical density functional theory for anisotropic colloidal particles.
    Rex M; Wensink HH; Löwen H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 1):021403. PubMed ID: 17930035
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Brownian self-driven particles on the surface of a sphere.
    Apaza L; Sandoval M
    Phys Rev E; 2017 Aug; 96(2-1):022606. PubMed ID: 28950475
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Super-Gaussian, superdiffusive transport of multimode active matter.
    Hahn S; Song S; Yang GS; Kang J; Lee KT; Sung J
    Phys Rev E; 2020 Oct; 102(4-1):042612. PubMed ID: 33212710
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Rational design and dynamics of self-propelled colloidal bead chains: from rotators to flagella.
    Vutukuri HR; Bet B; van Roij R; Dijkstra M; Huck WTS
    Sci Rep; 2017 Dec; 7(1):16758. PubMed ID: 29196659
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Helical paths, gravitaxis, and separation phenomena for mass-anisotropic self-propelling colloids: Experiment versus theory.
    Campbell AI; Wittkowski R; Ten Hagen B; Löwen H; Ebbens SJ
    J Chem Phys; 2017 Aug; 147(8):084905. PubMed ID: 28863518
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Swarm behavior of self-propelled rods and swimming flagella.
    Yang Y; Marceau V; Gompper G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 1):031904. PubMed ID: 21230105
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Brownian translation and rotation from the ballistic to the diffusive limit and derivation of the physical properties of dust agglomerates.
    Schubert B; Molinski NS; von Borstel I; Glißmann T; Balapanov D; Vedernikov A; Blum J
    Phys Rev E; 2023 Mar; 107(3-1):034136. PubMed ID: 37072960
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.