These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

397 related articles for article (PubMed ID: 24125265)

  • 61. Brownian motion with active fluctuations.
    Romanczuk P; Schimansky-Geier L
    Phys Rev Lett; 2011 Jun; 106(23):230601. PubMed ID: 21770491
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Effects of translation-rotation coupling on the displacement probability distribution functions of boomerang colloidal particles.
    Chakrabarty A; Wang F; Sun K; Wei QH
    Soft Matter; 2016 May; 12(19):4318-23. PubMed ID: 27079870
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Dynamics of gas-fluidized granular rods.
    Daniels LJ; Park Y; Lubensky TC; Durian DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041301. PubMed ID: 19518218
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Inertial delay of self-propelled particles.
    Scholz C; Jahanshahi S; Ldov A; Löwen H
    Nat Commun; 2018 Dec; 9(1):5156. PubMed ID: 30514839
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Gaussian theory for spatially distributed self-propelled particles.
    Seyed-Allaei H; Schimansky-Geier L; Ejtehadi MR
    Phys Rev E; 2016 Dec; 94(6-1):062603. PubMed ID: 28085336
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Duality of diffusion dynamics in particle motion in soft-mode turbulence.
    Suzuki M; Sueto H; Hosokawa Y; Muramoto N; Narumi T; Hidaka Y; Kai S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042147. PubMed ID: 24229155
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Glassy dynamics of athermal self-propelled particles: Computer simulations and a nonequilibrium microscopic theory.
    Szamel G; Flenner E; Berthier L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062304. PubMed ID: 26172716
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Fitting an active Brownian particle's mean-squared displacement with improved parameter estimation.
    Bailey MR; Sprenger AR; Grillo F; Löwen H; Isa L
    Phys Rev E; 2022 Nov; 106(5):L052602. PubMed ID: 36559483
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Emergence of Collective Motion in a Model of Interacting Brownian Particles.
    Dossetti V; Sevilla FJ
    Phys Rev Lett; 2015 Jul; 115(5):058301. PubMed ID: 26274444
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Artificial Chemotaxis of Self-Phoretic Active Colloids: Collective Behavior.
    Stark H
    Acc Chem Res; 2018 Nov; 51(11):2681-2688. PubMed ID: 30346724
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Phase behaviour of active Brownian particles: the role of dimensionality.
    Stenhammar J; Marenduzzo D; Allen RJ; Cates ME
    Soft Matter; 2014 Mar; 10(10):1489-99. PubMed ID: 24651885
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Active dynamics of colloidal particles in time-varying laser speckle patterns.
    Bianchi S; Pruner R; Vizsnyiczai G; Maggi C; Di Leonardo R
    Sci Rep; 2016 Jun; 6():27681. PubMed ID: 27279540
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Brownian particles in supramolecular polymer solutions.
    van der Gucht J; Besseling NA; Knoben W; Bouteiller L; Cohen Stuart MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 1):051106. PubMed ID: 12786133
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Active dipole clusters: From helical motion to fission.
    Kaiser A; Popowa K; Löwen H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012301. PubMed ID: 26274156
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Dynamics of a Brownian circle swimmer.
    van Teeffelen S; Löwen H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):020101. PubMed ID: 18850771
    [TBL] [Abstract][Full Text] [Related]  

  • 76. 3D Active Brownian Motion of Single Dust Particles Induced by a Laser in a DC Glow Discharge.
    Svetlov AS; Vasiliev MM; Kononov EA; Petrov OF; Trukhachev FM
    Molecules; 2023 Feb; 28(4):. PubMed ID: 36838777
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Tagged particle motion in a dense liquid: feedback effects from the collective dynamics.
    Kaur C; Das SP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 1):051505. PubMed ID: 12786156
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Brownian motion under annihilation dynamics.
    García de Soria MI; Maynar P; Trizac E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 1):061110. PubMed ID: 19256805
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Anomalous diffusion as modeled by a nonstationary extension of Brownian motion.
    Cushman JH; O'Malley D; Park M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):032101. PubMed ID: 19391995
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Diffusion of active chiral particles.
    Sevilla FJ
    Phys Rev E; 2016 Dec; 94(6-1):062120. PubMed ID: 28085387
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.