These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 24125326)

  • 1. Hopf bifurcation and multistability in a system of phase oscillators.
    Astakhov S; Fujiwara N; Gulay A; Tsukamoto N; Kurths J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032908. PubMed ID: 24125326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of asymmetrical and repulsive coupling in the dynamics of two coupled van der Pol oscillators.
    Astakhov S; Gulai A; Fujiwara N; Kurths J
    Chaos; 2016 Feb; 26(2):023102. PubMed ID: 26931583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conversion of stability in systems close to a Hopf bifurcation by time-delayed coupling.
    Choe CU; Flunkert V; Hövel P; Benner H; Schöll E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):046206. PubMed ID: 17500977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bursting multistability induced by double-Hopf bifurcation.
    Xia Y; Yanchuk S; Cao Y; Bi Q; Kurths J
    Chaos; 2023 Aug; 33(8):. PubMed ID: 38060774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bifurcation, amplitude death and oscillation patterns in a system of three coupled van der Pol oscillators with diffusively delayed velocity coupling.
    Song Y; Xu J; Zhang T
    Chaos; 2011 Jun; 21(2):023111. PubMed ID: 21721753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amplitude death through a Hopf bifurcation in coupled electrochemical oscillators: experiments and simulations.
    Zhai Y; Kiss IZ; Hudson JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 2):026208. PubMed ID: 14995549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The emergence of multistability and chaos in a two-mode van der Pol generator versus different connection types of linear oscillators.
    Astakhov OV; Astakhov SV; Krakhovskaya NS; Astakhov VV; Kurths J
    Chaos; 2018 Jun; 28(6):063118. PubMed ID: 29960386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stability switches and multistability coexistence in a delay-coupled neural oscillators system.
    Song Z; Xu J
    J Theor Biol; 2012 Nov; 313():98-114. PubMed ID: 22921877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pair of excitable FitzHugh-Nagumo elements: synchronization, multistability, and chaos.
    Yanagita T; Ichinomiya T; Oyama Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056218. PubMed ID: 16383738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synchronization of electrochemical oscillators with differential coupling.
    Wickramasinghe M; Kiss IZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062911. PubMed ID: 24483535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emergence of multistability and strongly asymmetric collective modes in two quorum sensing coupled identical ring oscillators.
    Hellen EH; Volkov E
    Chaos; 2020 Dec; 30(12):121101. PubMed ID: 33380051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Critical behavior and synchronization of discrete stochastic phase-coupled oscillators.
    Wood K; Van den Broeck C; Kawai R; Lindenberg K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 1):031113. PubMed ID: 17025600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bifurcation study of phase oscillator systems with attractive and repulsive interaction.
    Burylko O; Kazanovich Y; Borisyuk R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022911. PubMed ID: 25215803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stochastic bifurcation in noise-driven lasers and Hopf oscillators.
    Wieczorek S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 2):036209. PubMed ID: 19392037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupled Lorenz oscillators near the Hopf boundary: Multistability, intermingled basins, and quasiriddling.
    Wontchui TT; Effa JY; Fouda HPE; Ujjwal SR; Ramaswamy R
    Phys Rev E; 2017 Dec; 96(6-1):062203. PubMed ID: 29347357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clustering in globally coupled oscillators near a Hopf bifurcation: theory and experiments.
    Kori H; Kuramoto Y; Jain S; Kiss IZ; Hudson JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062906. PubMed ID: 25019850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase multistability and phase synchronization in an array of locally coupled period-doubling oscillators.
    Shabunin A; Feudel U; Astakhov V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026211. PubMed ID: 19792235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clustering in delay-coupled smooth and relaxational chemical oscillators.
    Blaha K; Lehnert J; Keane A; Dahms T; Hövel P; Schöll E; Hudson JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062915. PubMed ID: 24483539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bifurcation analysis of multistability of synchronous states in the system of two delay-coupled oscillators.
    Adilova AB; Balakin MI; Gerasimova SA; Ryskin NM
    Chaos; 2021 Nov; 31(11):113103. PubMed ID: 34881617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient chaotic rotating waves in a ring of unidirectionally coupled symmetric Bonhoeffer-van der Pol oscillators near a codimension-two bifurcation point.
    Horikawa Y; Kitajima H
    Chaos; 2012 Sep; 22(3):033115. PubMed ID: 23020454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.