These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

430 related articles for article (PubMed ID: 24125533)

  • 1. Measurements of ultrasound velocity and attenuation in numerical anisotropic porous media compared to Biot's and multiple scattering models.
    Mézière F; Muller M; Bossy E; Derode A
    Ultrasonics; 2014 Jul; 54(5):1146-54. PubMed ID: 24125533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of ultrasound propagation through bovine cancellous bone using elastic and Biot's finite-difference time-domain methods.
    Hosokawa A
    J Acoust Soc Am; 2005 Sep; 118(3 Pt 1):1782-9. PubMed ID: 16240836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transient ultrasound propagation in porous media using Biot theory and fractional calculus: application to human cancellous bone.
    Fellah M; Fellah ZE; Mitri FG; Ogam E; Depollier C
    J Acoust Soc Am; 2013 Apr; 133(4):1867-81. PubMed ID: 23556556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasonic wave propagation in cancellous and cortical bone: prediction of some experimental results by Biot's theory.
    Williams JL
    J Acoust Soc Am; 1992 Feb; 91(2):1106-12. PubMed ID: 1556311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of acoustic characteristics predicted by Biot's theory and the modified Biot-Attenborough model in cancellous bone.
    Lee KI; Yoon SW
    J Biomech; 2006; 39(2):364-8. PubMed ID: 16321640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of Biot's theory to ultrasonic characterization of human cancellous bones: determination of structural, material, and mechanical properties.
    Pakula M; Padilla F; Laugier P; Kaczmarek M
    J Acoust Soc Am; 2008 Apr; 123(4):2415-23. PubMed ID: 18397044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasonic wave propagation in human cancellous bone: application of Biot theory.
    Fellah ZE; Chapelon JY; Berger S; Lauriks W; Depollier C
    J Acoust Soc Am; 2004 Jul; 116(1):61-73. PubMed ID: 15295965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. What kind of waves are measured in trabecular bone?
    Pakula M
    Ultrasonics; 2022 Jul; 123():106692. PubMed ID: 35176689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulations of ultrasound propagation in random arrangements of elliptic scatterers: occurrence of two longitudinal waves.
    Mézière F; Muller M; Dobigny B; Bossy E; Derode A
    J Acoust Soc Am; 2013 Feb; 133(2):643-52. PubMed ID: 23363084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of the biot model to ultrasound in bone: direct problem.
    Fellah ZA; Sebaa N; Fellah M; Mitri FG; Ogam E; Lauriks W; Depollier C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1508-15. PubMed ID: 18986940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasonic pulse waves in cancellous bone analyzed by finite-difference time-domain methods.
    Hosokawa A
    Ultrasonics; 2006 Dec; 44 Suppl 1():e227-31. PubMed ID: 16844171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of an anisotropic tortuosity in a biot model of ultrasonic propagation in cancellous bone.
    Hughes ER; Leighton TG; White PR; Petley GW
    J Acoust Soc Am; 2007 Jan; 121(1):568-74. PubMed ID: 17297810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasonic wave propagation in porous media: determination of acoustic parameters and high frequency limit of the classical models.
    Leclaire P; Kelders L; Lauriks W; Glorieux C; Thoen J
    Stud Health Technol Inform; 1997; 40():139-55. PubMed ID: 10168875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro acoustic waves propagation in human and bovine cancellous bone.
    Cardoso L; Teboul F; Sedel L; Oddou C; Meunier A
    J Bone Miner Res; 2003 Oct; 18(10):1803-12. PubMed ID: 14584891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasonic wave propagation in bovine cancellous bone.
    Hosokawa A; Otani T
    J Acoust Soc Am; 1997 Jan; 101(1):558-62. PubMed ID: 9000743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro estimation of fast and slow wave parameters of thin trabecular bone using space-alternating generalized expectation-maximization algorithm.
    Grimes M; Bouhadjera A; Haddad S; Benkedidah T
    Ultrasonics; 2012 Jul; 52(5):614-21. PubMed ID: 22284937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurements of ultrasonic phase velocities and attenuation of slow waves in cellular aluminum foams as cancellous bone-mimicking phantoms.
    Zhang C; Le LH; Zheng R; Ta D; Lou E
    J Acoust Soc Am; 2011 May; 129(5):3317-26. PubMed ID: 21568432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabric dependence of wave propagation in anisotropic porous media.
    Cowin SC; Cardoso L
    Biomech Model Mechanobiol; 2011 Feb; 10(1):39-65. PubMed ID: 20461539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of ultrasonic wave propagation in anisotropic poroelastic bone plate using hybrid spectral/finite element method.
    Nguyen VH; Naili S
    Int J Numer Method Biomed Eng; 2012 Aug; 28(8):861-76. PubMed ID: 25099567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cancellous bone analysis with modified least squares Prony's method and chirp filter: phantom experiments and simulation.
    Wear KA
    J Acoust Soc Am; 2010 Oct; 128(4):2191-203. PubMed ID: 20968389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.