These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 24125912)

  • 1. A model for predicting the permeation of dimethyl sulfoxide into articular cartilage, and its application to the liquidus-tracking method.
    Yu X; Chen G; Zhang S
    Cryobiology; 2013 Dec; 67(3):332-8. PubMed ID: 24125912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A model to predict the permeation kinetics of dimethyl sulfoxide in articular cartilage.
    Yu X; Chen G; Zhang S
    Biopreserv Biobank; 2013 Feb; 11(1):51-6. PubMed ID: 24845255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A refinement to the liquidus-tracking method for vitreous preservation of articular cartilage.
    Yu XY; Chen GM; Zhang SZ
    Cryo Letters; 2013; 34(3):267-76. PubMed ID: 23812317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel method to measure cryoprotectant permeation into intact articular cartilage.
    Sharma R; Law GK; Rekieh K; Abazari A; Elliott JA; McGann LE; Jomha NM
    Cryobiology; 2007 Apr; 54(2):196-203. PubMed ID: 17379205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of Cryoprotectant Permeation into Articular Cartilage: A Model Suitable for Several Cryoprotective Agents.
    Yu X; Chen G
    Cryo Letters; 2019; 40(4):209-218. PubMed ID: 31278401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Permeation of several cryoprotectant agents into porcine articular cartilage.
    Jomha NM; Law GK; Abazari A; Rekieh K; Elliott JAW; McGann LE
    Cryobiology; 2009 Feb; 58(1):110-114. PubMed ID: 19041639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A liquidus tracking approach to the cryopreservation of human cartilage allografts.
    Kay AG; Hoyland JA; Rooney P; Kearney JN; Pegg DE
    Cryobiology; 2015 Aug; 71(1):77-84. PubMed ID: 26012701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of freezing rates and cryoprotectant on thermal expansion of articular cartilage during freezing process.
    Xu Y; Sun HJ; Lv Y; Zou JC; Lin BL; Hua TC
    Cryo Letters; 2013; 34(4):313-23. PubMed ID: 23995399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Further work on the cryopreservation of articular cartilage with particular reference to the liquidus tracking (LT) method.
    Wang L; Pegg DE; Lorrison J; Vaughan D; Rooney P
    Cryobiology; 2007 Oct; 55(2):138-47. PubMed ID: 17678641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Viscosities of the ternary solution dimethyl sulfoxide/water/sodium chloride at subzero temperatures and their application in cryopreservation.
    Zhang S; Yu X; Chen Z; Chen G
    Cryobiology; 2013 Apr; 66(2):186-91. PubMed ID: 23376371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The determination of membrane permeability coefficients of canine pancreatic islet cells and their application to islet cryopreservation.
    Liu J; Zieger MA; Lakey JR; Woods EJ; Critser JK
    Cryobiology; 1997 Aug; 35(1):1-13. PubMed ID: 9245505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cryoprotectant transport through articular cartilage for long-term storage: experimental and modeling studies.
    Mukherjee IN; Li Y; Song YC; Long RC; Sambanis A
    Osteoarthritis Cartilage; 2008 Nov; 16(11):1379-86. PubMed ID: 18539055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Permeation of dimethyl sulfoxide into articular cartilage at subzero temperatures.
    Zhang SZ; Yu XY; Chen GM
    J Zhejiang Univ Sci B; 2012 Mar; 13(3):213-20. PubMed ID: 22374614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling and experimental studies on mass transport of multiple cryoprotective agents in articular cartilage.
    Yu X; Zhang S; Chen G
    Cryobiology; 2022 Oct; 108():57-66. PubMed ID: 35918000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cryopreservation of articular cartilage. Part 3: the liquidus-tracking method.
    Pegg DE; Wang L; Vaughan D
    Cryobiology; 2006 Jun; 52(3):360-8. PubMed ID: 16527263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cryopreservation of articular cartilage.
    Abazari A; Jomha NM; Elliott JA; McGann LE
    Cryobiology; 2013 Jun; 66(3):201-9. PubMed ID: 23499618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MR spectroscopy measurement of the diffusion of dimethyl sulfoxide in articular cartilage and comparison to theoretical predictions.
    Abazari A; Elliott JA; McGann LE; Thompson RB
    Osteoarthritis Cartilage; 2012 Sep; 20(9):1004-10. PubMed ID: 22579917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cryoprotectant permeation through human articular cartilage.
    Carsi B; Lopez-Lacomba JL; Sanz J; Marco F; Lopez-Duran L
    Osteoarthritis Cartilage; 2004 Oct; 12(10):787-92. PubMed ID: 15450528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method of isolating viable chondrocytes with proliferative capacity from cryopreserved human articular cartilage.
    Xia Z; Duan X; Murray D; Triffitt JT; Price AJ
    Cell Tissue Bank; 2013 Jun; 14(2):267-76. PubMed ID: 22802140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of cryoprotectant permeation in porcine heart valve leaflets.
    Lakey JR; Helms LM; Moser G; Lix B; Slupsky CM; Rebeyka IM; Sykes BD; McGann LE
    Cell Transplant; 2003; 12(2):123-8. PubMed ID: 12797373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.