BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 24126019)

  • 1. General and specific replication profiles are detected in normal human cells by genome-wide and single-locus molecular combing.
    Palumbo E; Tosoni E; Russo A
    Exp Cell Res; 2013 Dec; 319(20):3081-93. PubMed ID: 24126019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Replication dynamics at common fragile site FRA6E.
    Palumbo E; Matricardi L; Tosoni E; Bensimon A; Russo A
    Chromosoma; 2010 Dec; 119(6):575-87. PubMed ID: 20585795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for sequential and increasing activation of replication origins along replication timing gradients in the human genome.
    Guilbaud G; Rappailles A; Baker A; Chen CL; Arneodo A; Goldar A; d'Aubenton-Carafa Y; Thermes C; Audit B; Hyrien O
    PLoS Comput Biol; 2011 Dec; 7(12):e1002322. PubMed ID: 22219720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visualization of bidirectional initiation of chromosomal DNA replication in a human cell free system.
    Marheineke K; Hyrien O; Krude T
    Nucleic Acids Res; 2005; 33(21):6931-41. PubMed ID: 16332696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous homologous recombination is induced by collapsed replication forks that are caused by endogenous DNA single-strand breaks.
    Saleh-Gohari N; Bryant HE; Schultz N; Parker KM; Cassel TN; Helleday T
    Mol Cell Biol; 2005 Aug; 25(16):7158-69. PubMed ID: 16055725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA double-strand breaks associated with replication forks are predominantly repaired by homologous recombination involving an exchange mechanism in mammalian cells.
    Arnaudeau C; Lundin C; Helleday T
    J Mol Biol; 2001 Apr; 307(5):1235-45. PubMed ID: 11292338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of DNA replication profiles in budding yeast and mammalian cells using DNA combing.
    Bianco JN; Poli J; Saksouk J; Bacal J; Silva MJ; Yoshida K; Lin YL; Tourrière H; Lengronne A; Pasero P
    Methods; 2012 Jun; 57(2):149-57. PubMed ID: 22579803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analyzing the dynamics of DNA replication in Mammalian cells using DNA combing.
    Bialic M; Coulon V; Drac M; Gostan T; Schwob E
    Methods Mol Biol; 2015; 1300():67-78. PubMed ID: 25916705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determining the replication dynamics of specific gene loci by single-molecule analysis of replicated DNA.
    Demczuk A; Norio P
    Methods Mol Biol; 2009; 521():633-71. PubMed ID: 19563132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Replication dynamics: biases and robustness of DNA fiber analysis.
    Técher H; Koundrioukoff S; Azar D; Wilhelm T; Carignon S; Brison O; Debatisse M; Le Tallec B
    J Mol Biol; 2013 Nov; 425(23):4845-55. PubMed ID: 23557832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide sequence and functional analysis of early replicating DNA in normal human fibroblasts.
    Cohen SM; Furey TS; Doggett NA; Kaufman DG
    BMC Genomics; 2006 Nov; 7():301. PubMed ID: 17134498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An isochore transition zone in the NF1 gene region is a conserved landmark of chromosome structure and function.
    Schmegner C; Berger A; Vogel W; Hameister H; Assum G
    Genomics; 2005 Oct; 86(4):439-45. PubMed ID: 16081245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Requirement for functional DNA polymerase eta in genome-wide repair of UV-induced DNA damage during S phase.
    Auclair Y; Rouget R; Belisle JM; Costantino S; Drobetsky EA
    DNA Repair (Amst); 2010 Jul; 9(7):754-64. PubMed ID: 20457011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of DNA combing to study DNA replication in Xenopus and human cell-free systems.
    Marheineke K; Goldar A; Krude T; Hyrien O
    Methods Mol Biol; 2009; 521():575-603. PubMed ID: 19563130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Organization of mammalian genome replication: data on the high rate of DNA replication in replicons of structural heterochromatin].
    Khaitova NM; Il'ina GS; Liapunova NA
    Tsitologiia; 1980 Jun; 22(6):640-5. PubMed ID: 6998067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Unidirectional Replication Forks in the Mouse Genome.
    Zerbib A; Simon I
    Int J Mol Sci; 2023 Jun; 24(11):. PubMed ID: 37298562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. swi1- and swi3-dependent and independent replication fork arrest at the ribosomal DNA of Schizosaccharomyces pombe.
    Krings G; Bastia D
    Proc Natl Acad Sci U S A; 2004 Sep; 101(39):14085-90. PubMed ID: 15371597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal differences in DNA replication during the S phase using single fiber analysis of normal human fibroblasts and glioblastoma T98G cells.
    Frum RA; Khondker ZS; Kaufman DG
    Cell Cycle; 2009 Oct; 8(19):3133-48. PubMed ID: 19738421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Analysis, identification and correction of some errors of model refseqs appeared in NCBI Human Gene Database by in silico cloning and experimental verification of novel human genes].
    Zhang DL; Ji L; Li YD
    Yi Chuan Xue Bao; 2004 May; 31(5):431-43. PubMed ID: 15478601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Replication timing in a single human chromosome 11 transferred into the Chinese hamster ovary (CHO) cell line.
    Watanabe Y; Kazuki Y; Oshimura M; Ikemura T; Maekawa M
    Gene; 2012 Nov; 510(1):1-6. PubMed ID: 22964274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.