These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 24126073)

  • 1. Less is more: improving proteostasis by translation slow down.
    Sherman MY; Qian SB
    Trends Biochem Sci; 2013 Dec; 38(12):585-91. PubMed ID: 24126073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The stop-and-go traffic regulating protein biogenesis: How translation kinetics controls proteostasis.
    Stein KC; Frydman J
    J Biol Chem; 2019 Feb; 294(6):2076-2084. PubMed ID: 30504455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation of ribosome bound nascent polypeptides in vitro to identify translational pause sites along mRNA.
    Jha SS; Komar AA
    J Vis Exp; 2012 Jul; (65):. PubMed ID: 22806127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial RF3 senses chaperone function in co-translational folding.
    Zhao L; Castanié-Cornet MP; Kumar S; Genevaux P; Hayer-Hartl M; Hartl FU
    Mol Cell; 2021 Jul; 81(14):2914-2928.e7. PubMed ID: 34107307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic analysis of protein homeostasis and aggregation.
    Laskowska E; Kuczyńska-Wiśnik D; Lipińska B
    J Proteomics; 2019 Apr; 198():98-112. PubMed ID: 30529741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Translational regulation by ribosome-associated quality control in neurodegenerative disease, cancer, and viral infection.
    Lu B
    Front Cell Dev Biol; 2022; 10():970654. PubMed ID: 36187485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear import factor Srp1 and its associated protein Sts1 couple ribosome-bound nascent polypeptides to proteasomes for cotranslational degradation.
    Ha SW; Ju D; Xie Y
    J Biol Chem; 2014 Jan; 289(5):2701-10. PubMed ID: 24338021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Translational Control by Ribosome Pausing in Bacteria: How a Non-uniform Pace of Translation Affects Protein Production and Folding.
    Samatova E; Daberger J; Liutkute M; Rodnina MV
    Front Microbiol; 2020; 11():619430. PubMed ID: 33505387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A functional connection between translation elongation and protein folding at the ribosome exit tunnel in Saccharomyces cerevisiae.
    Rodríguez-Galán O; García-Gómez JJ; Rosado IV; Wei W; Méndez-Godoy A; Pillet B; Alekseenko A; Steinmetz LM; Pelechano V; Kressler D; de la Cruz J
    Nucleic Acids Res; 2021 Jan; 49(1):206-220. PubMed ID: 33330942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein Elongation, Co-translational Folding and Targeting.
    Rodnina MV; Wintermeyer W
    J Mol Biol; 2016 May; 428(10 Pt B):2165-85. PubMed ID: 27038507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-translational mechanisms of quality control of newly synthesized polypeptides.
    Gandin V; Topisirovic I
    Translation (Austin); 2014; 2(1):e28109. PubMed ID: 26779401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Ribosome Cooperates with a Chaperone to Guide Multi-domain Protein Folding.
    Liu K; Maciuba K; Kaiser CM
    Mol Cell; 2019 Apr; 74(2):310-319.e7. PubMed ID: 30852061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ending a bad start: Triggers and mechanisms of co-translational protein degradation.
    Eisenack TJ; Trentini DB
    Front Mol Biosci; 2022; 9():1089825. PubMed ID: 36660423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The nascent polypeptide-associated complex is a key regulator of proteostasis.
    Kirstein-Miles J; Scior A; Deuerling E; Morimoto RI
    EMBO J; 2013 May; 32(10):1451-68. PubMed ID: 23604074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. METTL18-mediated histidine methylation of RPL3 modulates translation elongation for proteostasis maintenance.
    Matsuura-Suzuki E; Shimazu T; Takahashi M; Kotoshiba K; Suzuki T; Kashiwagi K; Sohtome Y; Akakabe M; Sodeoka M; Dohmae N; Ito T; Shinkai Y; Iwasaki S
    Elife; 2022 Jun; 11():. PubMed ID: 35674491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The intrinsic and extrinsic factors that contribute to proteostasis decline and pathological protein misfolding.
    Kikis EA
    Adv Protein Chem Struct Biol; 2019; 118():145-161. PubMed ID: 31928724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-equilibrium dynamics of a nascent polypeptide during translation suppress its misfolding.
    Alexander LM; Goldman DH; Wee LM; Bustamante C
    Nat Commun; 2019 Jun; 10(1):2709. PubMed ID: 31221966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Does proteostasis get lost in translation? Implications for protein aggregation across the lifespan.
    Francisco S; Ferreira M; Moura G; Soares AR; Santos MAS
    Ageing Res Rev; 2020 Sep; 62():101119. PubMed ID: 32603841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ribosome-associated quality control of membrane proteins at the endoplasmic reticulum.
    Phillips BP; Miller EA
    J Cell Sci; 2020 Nov; 133(22):. PubMed ID: 33247003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ribosome in action: Tuning of translational efficiency and protein folding.
    Rodnina MV
    Protein Sci; 2016 Aug; 25(8):1390-406. PubMed ID: 27198711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.