These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 24126081)

  • 1. Metabolic engineering of Arabidopsis for butanetriol production using bacterial genes.
    Abdel-Ghany SE; Day I; Heuberger AL; Broeckling CD; Reddy AS
    Metab Eng; 2013 Nov; 20():109-20. PubMed ID: 24126081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of 1,2,4-butanetriol from xylose by Saccharomyces cerevisiae through Fe metabolic engineering.
    Bamba T; Yukawa T; Guirimand G; Inokuma K; Sasaki K; Hasunuma T; Kondo A
    Metab Eng; 2019 Dec; 56():17-27. PubMed ID: 31434008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient production of 1,2,4-butanetriol from corn cob hydrolysate by metabolically engineered Escherichia coli.
    Li P; Wang M; Di H; Du Q; Zhang Y; Tan X; Xu P; Gao C; Jiang T; Lü C; Ma C
    Microb Cell Fact; 2024 Feb; 23(1):49. PubMed ID: 38347493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of 1,2,4-butanetriol production from xylose in Saccharomyces cerevisiae by metabolic engineering of NADH/NADPH balance.
    Yukawa T; Bamba T; Guirimand G; Matsuda M; Hasunuma T; Kondo A
    Biotechnol Bioeng; 2021 Jan; 118(1):175-185. PubMed ID: 32902873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of Candida tropicalis for efficient 1,2,4-butanetriol production.
    Li J; Xia Y; Wei B; Shen W; Yang H; Chen X
    Biochem Biophys Res Commun; 2024 May; 710():149876. PubMed ID: 38579537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic pathway optimization for biosynthesis of 1,2,4-butanetriol from xylose by engineered Escherichia coli.
    Zhang N; Wang J; Zhang Y; Gao H
    Enzyme Microb Technol; 2016 Nov; 93-94():51-58. PubMed ID: 27702485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modification of an engineered Escherichia coli by a combined strategy of deleting branch pathway, fine-tuning xylose isomerase expression, and substituting decarboxylase to improve 1,2,4-butanetriol production.
    Jing P; Cao X; Lu X; Zong H; Zhuge B
    J Biosci Bioeng; 2018 Nov; 126(5):547-552. PubMed ID: 29945765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial synthesis of the energetic material precursor 1,2,4-butanetriol.
    Niu W; Molefe MN; Frost JW
    J Am Chem Soc; 2003 Oct; 125(43):12998-9. PubMed ID: 14570452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of Phloroglucinol, a Platform Chemical, in Arabidopsis using a Bacterial Gene.
    Abdel-Ghany SE; Day I; Heuberger AL; Broeckling CD; Reddy AS
    Sci Rep; 2016 Dec; 6():38483. PubMed ID: 27924918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovering a novel D-xylonate-responsive promoter: the P
    Bañares AB; Valdehuesa KNG; Ramos KRM; Nisola GM; Lee WK; Chung WJ
    Appl Microbiol Biotechnol; 2019 Oct; 103(19):8063-8074. PubMed ID: 31482281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biotechnological production of 1,2,4-butanetriol: An efficient process to synthesize energetic material precursor from renewable biomass.
    Cao Y; Niu W; Guo J; Xian M; Liu H
    Sci Rep; 2015 Dec; 5():18149. PubMed ID: 26670289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. d-1,2,4-Butanetriol production from renewable biomass with optimization of synthetic pathway in engineered Escherichia coli.
    Wang X; Xu N; Hu S; Yang J; Gao Q; Xu S; Chen K; Ouyang P
    Bioresour Technol; 2018 Feb; 250():406-412. PubMed ID: 29195152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rational engineering of diol dehydratase enables 1,4-butanediol biosynthesis from xylose.
    Wang J; Jain R; Shen X; Sun X; Cheng M; Liao JC; Yuan Q; Yan Y
    Metab Eng; 2017 Mar; 40():148-156. PubMed ID: 28215518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Biosynthesis of D-1,2,4-Butanetriol From d-Arabinose With an Engineered
    Wang J; Chen Q; Wang X; Chen K; Ouyang P
    Front Bioeng Biotechnol; 2022; 10():844517. PubMed ID: 35402410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding Functional Roles of Native Pentose-Specific Transporters for Activating Dormant Pentose Metabolism in Yarrowia lipolytica.
    Ryu S; Trinh CT
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Progress in research on the biosynthesis of 1,2,4-butanetriol by engineered microbes.
    Ma X; Sun C; Xian M; Guo J; Zhang R
    World J Microbiol Biotechnol; 2024 Jan; 40(2):68. PubMed ID: 38200399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. d-Ribose Catabolism in Archaea: Discovery of a Novel Oxidative Pathway in
    Johnsen U; Sutter JM; Reinhardt A; Pickl A; Wang R; Xiang H; Schönheit P
    J Bacteriol; 2020 Jan; 202(3):. PubMed ID: 31712277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering nonphosphorylative metabolism to synthesize mesaconate from lignocellulosic sugars in Escherichia coli.
    Bai W; Tai YS; Wang J; Wang J; Jambunathan P; Fox KJ; Zhang K
    Metab Eng; 2016 Nov; 38():285-292. PubMed ID: 27697562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic pathway optimization for improved 1,2,4-butanetriol production.
    Sun L; Yang F; Sun H; Zhu T; Li X; Li Y; Xu Z; Zhang Y
    J Ind Microbiol Biotechnol; 2016 Jan; 43(1):67-78. PubMed ID: 26498325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rational protein engineering of a ketoacids decarboxylase for efficient production of 1,2,4-butanetriol from arabinose.
    Shen X; Xu H; Wang T; Zhang R; Sun X; Yuan Q; Wang J
    Biotechnol Biofuels Bioprod; 2023 Nov; 16(1):172. PubMed ID: 37957743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.