BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

702 related articles for article (PubMed ID: 24126084)

  • 1. Characterization of global gene expression during assurance of lifespan extension by caloric restriction in budding yeast.
    Choi KM; Kwon YY; Lee CK
    Exp Gerontol; 2013 Dec; 48(12):1455-68. PubMed ID: 24126084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calorie restriction extends the chronological lifespan of Saccharomyces cerevisiae independently of the Sirtuins.
    Smith DL; McClure JM; Matecic M; Smith JS
    Aging Cell; 2007 Oct; 6(5):649-62. PubMed ID: 17711561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mrg19 depletion increases S. cerevisiae lifespan by augmenting ROS defence.
    Kharade SV; Mittal N; Das SP; Sinha P; Roy N
    FEBS Lett; 2005 Dec; 579(30):6809-13. PubMed ID: 16336970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An intervention resembling caloric restriction prolongs life span and retards aging in yeast.
    Jiang JC; Jaruga E; Repnevskaya MV; Jazwinski SM
    FASEB J; 2000 Nov; 14(14):2135-7. PubMed ID: 11024000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disruption of Snf3/Rgt2 glucose sensors decreases lifespan and caloric restriction effectiveness through Mth1/Std1 by adjusting mitochondrial efficiency in yeast.
    Choi KM; Kwon YY; Lee CK
    FEBS Lett; 2015 Jan; 589(3):349-57. PubMed ID: 25541485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple pathways regulating the calorie restriction response in yeast.
    Rahat O; Maoz N; Cohen HY
    J Gerontol A Biol Sci Med Sci; 2011 Feb; 66(2):163-9. PubMed ID: 21081478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomewide mechanisms of chronological longevity by dietary restriction in budding yeast.
    Campos SE; Avelar-Rivas JA; Garay E; Juárez-Reyes A; DeLuna A
    Aging Cell; 2018 Jun; 17(3):e12749. PubMed ID: 29575540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcription factor genes essential for cell proliferation and replicative lifespan in budding yeast.
    Kamei Y; Tai A; Dakeyama S; Yamamoto K; Inoue Y; Kishimoto Y; Ohara H; Mukai Y
    Biochem Biophys Res Commun; 2015 Jul; 463(3):351-6. PubMed ID: 26022127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Yeast Yak1 kinase, a bridge between PKA and stress-responsive transcription factors, Hsf1 and Msn2/Msn4.
    Lee P; Cho BR; Joo HS; Hahn JS
    Mol Microbiol; 2008 Nov; 70(4):882-95. PubMed ID: 18793336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stress resistance and lifespan are increased in C. elegans but decreased in S. cerevisiae by mafr-1/maf1 deletion.
    Cai Y; Wei YH
    Oncotarget; 2016 Mar; 7(10):10812-26. PubMed ID: 26934328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of caloric restriction on the expression of heat shock protein 70 and the activation of heat shock transcription factor 1.
    Heydari AR; You S; Takahashi R; Gutsmann A; Sarge KD; Richardson A
    Dev Genet; 1996; 18(2):114-24. PubMed ID: 8934873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rsp5 is required for the nuclear export of mRNA of HSF1 and MSN2/4 under stress conditions in Saccharomyces cerevisiae.
    Haitani Y; Takagi H
    Genes Cells; 2008 Feb; 13(2):105-16. PubMed ID: 18233954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inference of transcription modification in long-live yeast strains from their expression profiles.
    Cheng C; Fabrizio P; Ge H; Longo VD; Li LM
    BMC Genomics; 2007 Jul; 8():219. PubMed ID: 17617911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defining the Essential Function of Yeast Hsf1 Reveals a Compact Transcriptional Program for Maintaining Eukaryotic Proteostasis.
    Solís EJ; Pandey JP; Zheng X; Jin DX; Gupta PB; Airoldi EM; Pincus D; Denic V
    Mol Cell; 2016 Jul; 63(1):60-71. PubMed ID: 27320198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stress-induced transcription of the endoplasmic reticulum oxidoreductin gene ERO1 in the yeast Saccharomyces cerevisiae.
    Takemori Y; Sakaguchi A; Matsuda S; Mizukami Y; Sakurai H
    Mol Genet Genomics; 2006 Jan; 275(1):89-96. PubMed ID: 16292667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. hsf1 (+) extends chronological lifespan through Ecl1 family genes in fission yeast.
    Ohtsuka H; Azuma K; Murakami H; Aiba H
    Mol Genet Genomics; 2011 Jan; 285(1):67-77. PubMed ID: 21072667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ammonium is a key determinant on the dietary restriction of yeast chronological aging in culture medium.
    Santos J; Leitão-Correia F; Sousa MJ; Leão C
    Oncotarget; 2015 Mar; 6(9):6511-23. PubMed ID: 25576917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extension of chronological life span in yeast by decreased TOR pathway signaling.
    Powers RW; Kaeberlein M; Caldwell SD; Kennedy BK; Fields S
    Genes Dev; 2006 Jan; 20(2):174-84. PubMed ID: 16418483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of chaperone gene expression by heat shock transcription factor in Saccharomyces cerevisiae: importance in normal cell growth, stress resistance, and longevity.
    Sakurai H; Ota A
    FEBS Lett; 2011 Sep; 585(17):2744-8. PubMed ID: 21827755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae.
    Anderson RM; Bitterman KJ; Wood JG; Medvedik O; Sinclair DA
    Nature; 2003 May; 423(6936):181-5. PubMed ID: 12736687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.