These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 2412612)

  • 1. Rheological discrimination between native, rigid and aggregated red blood cells in oscillatory flow.
    Schneditz D; Ribitsch V; Kenner T
    Biorheology; 1985; 22(3):209-19. PubMed ID: 2412612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Red blood cell aggregates and their effect on non-Newtonian blood viscosity at low hematocrit in a two-fluid low shear rate microfluidic system.
    Mehri R; Mavriplis C; Fenech M
    PLoS One; 2018; 13(7):e0199911. PubMed ID: 30024907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-Newtonian viscosity of human blood: flow-induced changes in microstructure.
    Thurston GB
    Biorheology; 1994; 31(2):179-92. PubMed ID: 8729480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of hematocrit on wall shear rate in oscillatory flow: do the elastic properties of blood play a role?
    Brookshier KK; Tarbell JM
    Biorheology; 1991; 28(6):569-87. PubMed ID: 1818745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental evaluation of mechanical and electrical properties of RBC suspensions in Dextran and PEG under flow II. Role of RBC deformability and morphology.
    Antonova N; Riha P; Ivanov I; Gluhcheva Y
    Clin Hemorheol Microcirc; 2011; 49(1-4):441-50. PubMed ID: 22214715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Viscoelastic properties of whole blood. Influence of fast sedimenting red blood cell aggregates.
    Schneditz D; Rainer F; Kenner T
    Biorheology; 1987; 24(1):13-22. PubMed ID: 3651579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of flow geometry on blood viscoelasticity.
    Thurston GB; Henderson NM
    Biorheology; 2006; 43(6):729-46. PubMed ID: 17148856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Red cells adhering to a glass surface: deformation in a well-defined fluid shear field.
    Mohandas N
    Nouv Rev Fr Hematol (1978); 1976; 16(3):357-62. PubMed ID: 827735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental evaluation of mechanical and electrical properties of RBC suspensions under flow. Role of RBC aggregating agent.
    Antonova N; Riha P; Ivanov I
    Clin Hemorheol Microcirc; 2010; 45(2-4):253-61. PubMed ID: 20675907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Age and whole blood viscoelasticity. A risk factor study].
    Oder W; Kollegger H; Baumgartner C; Zeiler K; Oder B; Deecke L
    Acta Med Austriaca; 1991; 18 Suppl 1():71-4. PubMed ID: 1950394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rheological properties of human erythrocytes and their influence upon the "anomalous" viscosity of blood.
    Schmid-Schönbein H; Wells RE
    Ergeb Physiol; 1971; 63():146-219. PubMed ID: 5558776
    [No Abstract]   [Full Text] [Related]  

  • 12. Erythrocyte flow and elasticity of microvessels evaluated by marginal cell-free layer and flow resistance.
    Maeda N; Suzuki Y; Tanaka J; Tateishi N
    Am J Physiol; 1996 Dec; 271(6 Pt 2):H2454-61. PubMed ID: 8997305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rheology of concentrated suspensions of deformable elastic particles such as human erythrocytes.
    Pal R
    J Biomech; 2003 Jul; 36(7):981-9. PubMed ID: 12757807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human blood oscillating axially in a tube.
    Richardson PD; Lazzara S
    Biorheology; 1983; 20(3):317-26. PubMed ID: 6414549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New trends in clinical hemorheology: an introduction to the concept of the hemorheological profile.
    Stoltz JF; Donner M
    Schweiz Med Wochenschr Suppl; 1991; 43():41-9. PubMed ID: 1843037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of blood flow resistance under transverse vibration: red blood cell suspension in Dextran-40.
    Shin S; Ku Y; Suh JS; Moon SY; Jang JY
    Ann Biomed Eng; 2003 Oct; 31(9):1077-83. PubMed ID: 14582610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rheological aspects of red blood cell aggregation.
    Skalak R; Zhu C
    Biorheology; 1990; 27(3-4):309-25. PubMed ID: 2261499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rheology of the cerebral circulation.
    Kee DB; Wood JH
    Neurosurgery; 1984 Jul; 15(1):125-31. PubMed ID: 6206438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of erythrocyte orientation in flow by spin labeling III--erythrocyte orientation and rheological conditions.
    Bitbol M; Leterrier F; Dufaux J; Quemada D
    Biorheology; 1985; 22(1):43-53. PubMed ID: 3986318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viscoelasticity of pediatric blood and its implications for the testing of a pulsatile pediatric blood pump.
    Long JA; Undar A; Manning KB; Deutsch S
    ASAIO J; 2005; 51(5):563-6. PubMed ID: 16322719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.