These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 24126350)

  • 1. Spa13 of Shigella flexneri has a dual role: chaperone escort and export gate-activator switch of the type III secretion system.
    Cherradi Y; Hachani A; Allaoui A
    Microbiology (Reading); 2014 Jan; 160(Pt 1):130-141. PubMed ID: 24126350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The 33 carboxyl-terminal residues of Spa40 orchestrate the multi-step assembly process of the type III secretion needle complex in Shigella flexneri.
    Botteaux A; Kayath CA; Page AL; Jouihri N; Sani M; Boekema E; Biskri L; Parsot C; Allaoui A
    Microbiology (Reading); 2010 Sep; 156(Pt 9):2807-2817. PubMed ID: 20507885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MxiK and MxiN interact with the Spa47 ATPase and are required for transit of the needle components MxiH and MxiI, but not of Ipa proteins, through the type III secretion apparatus of Shigella flexneri.
    Jouihri N; Sory MP; Page AL; Gounon P; Parsot C; Allaoui A
    Mol Microbiol; 2003 Aug; 49(3):755-67. PubMed ID: 12864857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional slippage controls production of type III secretion apparatus components in Shigella flexneri.
    Penno C; Hachani A; Biskri L; Sansonetti P; Allaoui A; Parsot C
    Mol Microbiol; 2006 Dec; 62(5):1460-8. PubMed ID: 17059566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interplay between predicted inner-rod and gatekeeper in controlling substrate specificity of the type III secretion system.
    Cherradi Y; Schiavolin L; Moussa S; Meghraoui A; Meksem A; Biskri L; Azarkan M; Allaoui A; Botteaux A
    Mol Microbiol; 2013 Mar; 87(6):1183-99. PubMed ID: 23336839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MxiA, MxiC and IpaD Regulate Substrate Selection and Secretion Mode in the T3SS of Shigella flexneri.
    Shen DK; Blocker AJ
    PLoS One; 2016; 11(5):e0155141. PubMed ID: 27171191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Needle length control and the secretion substrate specificity switch are only loosely coupled in the type III secretion apparatus of Shigella.
    Shen DK; Moriya N; Martinez-Argudo I; Blocker AJ
    Microbiology (Reading); 2012 Jul; 158(Pt 7):1884-1896. PubMed ID: 22575894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cytoplasmic domain of MxiG interacts with MxiK and directs assembly of the sorting platform in the
    Tachiyama S; Chang Y; Muthuramalingam M; Hu B; Barta ML; Picking WL; Liu J; Picking WD
    J Biol Chem; 2019 Dec; 294(50):19184-19196. PubMed ID: 31699894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and Biochemical Characterization of Spa47 Provides Mechanistic Insight into Type III Secretion System ATPase Activation and Shigella Virulence Regulation.
    Burgess JL; Burgess RA; Morales Y; Bouvang JM; Johnson SJ; Dickenson NE
    J Biol Chem; 2016 Dec; 291(50):25837-25852. PubMed ID: 27770024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visualization of the type III secretion sorting platform of Shigella flexneri.
    Hu B; Morado DR; Margolin W; Rohde JR; Arizmendi O; Picking WL; Picking WD; Liu J
    Proc Natl Acad Sci U S A; 2015 Jan; 112(4):1047-52. PubMed ID: 25583506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The inner-rod component of Shigella flexneri type 3 secretion system, MxiI, is involved in the transmission of the secretion activation signal by its interaction with MxiC.
    El Hajjami N; Moussa S; Houssa J; Monteyne D; Perez-Morga D; Botteaux A
    Microbiologyopen; 2018 Feb; 7(1):. PubMed ID: 29194994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of transcription by the activity of the Shigella flexneri type III secretion apparatus.
    Mavris M; Page AL; Tournebize R; Demers B; Sansonetti P; Parsot C
    Mol Microbiol; 2002 Mar; 43(6):1543-53. PubMed ID: 11971264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MxiC is secreted by and controls the substrate specificity of the Shigella flexneri type III secretion apparatus.
    Botteaux A; Sory MP; Biskri L; Parsot C; Allaoui A
    Mol Microbiol; 2009 Jan; 71(2):449-60. PubMed ID: 19017268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrastructural analysis of IpaD at the tip of the nascent MxiH type III secretion apparatus of Shigella flexneri.
    Epler CR; Dickenson NE; Bullitt E; Picking WL
    J Mol Biol; 2012 Jun; 420(1-2):29-39. PubMed ID: 22480614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MxiN Differentially Regulates Monomeric and Oligomeric Species of the Shigella Type Three Secretion System ATPase Spa47.
    Case HB; Dickenson NE
    Biochemistry; 2018 Apr; 57(15):2266-2277. PubMed ID: 29595954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spa47 is an oligomerization-activated type three secretion system (T3SS) ATPase from Shigella flexneri.
    Burgess JL; Jones HB; Kumar P; Toth RT; Middaugh CR; Antony E; Dickenson NE
    Protein Sci; 2016 May; 25(5):1037-48. PubMed ID: 26947936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shutting Down Shigella Secretion: Characterizing Small Molecule Type Three Secretion System ATPase Inhibitors.
    Case HB; Mattock DS; Dickenson NE
    Biochemistry; 2018 Dec; 57(50):6906-6916. PubMed ID: 30460850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spa33, a cell surface-associated subunit of the Mxi-Spa type III secretory pathway of Shigella flexneri, regulates Ipa protein traffic.
    Schuch R; Maurelli AT
    Infect Immun; 2001 Apr; 69(4):2180-9. PubMed ID: 11254573
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Silué N; Campbell-Valois FX
    mSphere; 2022 Jun; 7(3):e0011522. PubMed ID: 35582904
    [No Abstract]   [Full Text] [Related]  

  • 20. Shigella Spa33 is an essential C-ring component of type III secretion machinery.
    Morita-Ishihara T; Ogawa M; Sagara H; Yoshida M; Katayama E; Sasakawa C
    J Biol Chem; 2006 Jan; 281(1):599-607. PubMed ID: 16246841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.