These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 24126853)

  • 21. Curve walking is not better than straight walking in estimating ambulation-related domains after incomplete spinal cord injury.
    Labruyère R; van Hedel HJ
    Arch Phys Med Rehabil; 2012 May; 93(5):796-801. PubMed ID: 22386212
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Postural adaptation to walking on inclined surfaces: II. Strategies following spinal cord injury.
    Leroux A; Fung J; Barbeau H
    Clin Neurophysiol; 2006 Jun; 117(6):1273-82. PubMed ID: 16644275
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Walking ability of spinal cord injury individuals: How to improve it?
    Sadeghi M; Ghasemi GA; Karimi MT
    Technol Health Care; 2017; 25(3):591-597. PubMed ID: 28106574
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The influence of ankle joint mobility when using an orthosis on stability in patients with spinal cord injury: a pilot study.
    Arazpour M; Bani MA; Hutchins SW; Curran S; Javanshir MA
    Spinal Cord; 2013 Oct; 51(10):750-4. PubMed ID: 23896671
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ability of walking without a walking device in patients with spinal cord injury as determined using data from functional tests.
    Poncumhak P; Saengsuwan J; Amatachaya S
    J Spinal Cord Med; 2014 Jul; 37(4):389-96. PubMed ID: 24621030
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determinants of gait performance following spinal cord injury.
    Waters RL; Yakura JS; Adkins R; Barnes G
    Arch Phys Med Rehabil; 1989 Nov; 70(12):811-8. PubMed ID: 2818152
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative biomechanical gait analysis of patients with central cord syndrome walking with one crutch and two crutches.
    Gil-Agudo A; Pérez-Rizo E; Del Ama-Espinosa A; Crespo-Ruiz B; Pérez-Nombela S; Sánchez-Ramos A
    Clin Biomech (Bristol); 2009 Aug; 24(7):551-7. PubMed ID: 19457601
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional implications of corticospinal tract impairment on gait after spinal cord injury.
    Barthélemy D; Knudsen H; Willerslev-Olsen M; Lundell H; Nielsen JB; Biering-Sørensen F
    Spinal Cord; 2013 Nov; 51(11):852-6. PubMed ID: 23939192
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gait changes with walking devices in persons with Parkinson's disease.
    Bryant MS; Pourmoghaddam A; Thrasher A
    Disabil Rehabil Assist Technol; 2012 Mar; 7(2):149-52. PubMed ID: 21954911
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recovery of sensory and supraspinal control of leg movement in people with chronic paraplegia: a case series.
    Possover M
    Arch Phys Med Rehabil; 2014 Apr; 95(4):610-4. PubMed ID: 24269993
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Partial weight-bearing gait using conventional assistive devices.
    Youdas JW; Kotajarvi BJ; Padgett DJ; Kaufman KR
    Arch Phys Med Rehabil; 2005 Mar; 86(3):394-8. PubMed ID: 15759217
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gait characteristics of post-poliomyelitis patients: standardization of quantitative data reporting.
    Portnoy S; Schwartz I
    Ann Phys Rehabil Med; 2013 Oct; 56(7-8):527-41. PubMed ID: 23891005
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [A robotic system for gait re-education in patients with an incomplete spinal cord injury].
    Esclarín-De Ruz A; Alcobendas-Maestro M; Casado-López R; Muñoz-Gonzalez A; Florido-Sánchez MA; González-Valdizán E
    Rev Neurol; 2009 Dec 16-31; 49(12):617-22. PubMed ID: 20013712
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Correlation of motor control in the supine position and assistive device used for ambulation in chronic incomplete spinal cord-injured persons.
    Tang SF; Tuel SM; McKay WB; Dimitrijevic MR
    Am J Phys Med Rehabil; 1994; 73(4):268-74. PubMed ID: 8043249
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Energy expenditure of the paraplegic gait: comparison between different walking aids and normal subjects.
    Ulkar B; Yavuzer G; Guner R; Ergin S
    Int J Rehabil Res; 2003 Sep; 26(3):213-7. PubMed ID: 14501573
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Why is walker-assisted gait metabolically expensive?
    Priebe JR; Kram R
    Gait Posture; 2011 Jun; 34(2):265-9. PubMed ID: 21665475
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Robotic resistance treadmill training improves locomotor function in human spinal cord injury: a pilot study.
    Wu M; Landry JM; Schmit BD; Hornby TG; Yen SC
    Arch Phys Med Rehabil; 2012 May; 93(5):782-9. PubMed ID: 22459697
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gait training in human spinal cord injury using electromechanical systems: effect of device type and patient characteristics.
    Benito-Penalva J; Edwards DJ; Opisso E; Cortes M; Lopez-Blazquez R; Murillo N; Costa U; Tormos JM; Vidal-Samsó J; Valls-Solé J; ; Medina J
    Arch Phys Med Rehabil; 2012 Mar; 93(3):404-12. PubMed ID: 22209475
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The feasibility of an 8-Week walking training program using a novel assistive gait training device in individuals with spinal cord injury.
    Alajam RA; Alqahtanti AS; Frederick J; Liu W
    Disabil Rehabil Assist Technol; 2022 Aug; 17(6):658-667. PubMed ID: 32780981
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Balance training improves static stability and gait in chronic incomplete spinal cord injury subjects: a pilot study.
    Tamburella F; Scivoletto G; Molinari M
    Eur J Phys Rehabil Med; 2013 Jun; 49(3):353-64. PubMed ID: 23486301
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.