These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 2412733)

  • 41. Changes in beta adrenergic receptors in submaxillary glands of chronically reserpine- or isoproterenol-treated rats.
    Roscher AA; Wiesmann UN; Honegger UE
    J Pharmacol Exp Ther; 1981 Feb; 216(2):419-24. PubMed ID: 6257891
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The chronically reserpinized rat as a possible model for cystic fibrosis. VI. Synergistic effects of isoproterenol on Ca++ and protein in the submaxillary gland.
    Wood DL; Martinez R
    Pediatr Res; 1977 Jul; 11(7):827-32. PubMed ID: 876704
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Desensitization of mucin secretion from rat submandibular tissues in response to isoproterenol.
    Ishikawa Y; Amano I; Ishida H
    Dent Jpn (Tokyo); 1990; 27(1):51-6. PubMed ID: 1965961
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Prenatal and early postnatal beta-adrenergic receptor-mediated increase of cyclic AMP in slices of rat brain.
    Walton KG; Miller E; Baldessarini RJ
    Brain Res; 1979 Nov; 177(3):515-22. PubMed ID: 91411
    [TBL] [Abstract][Full Text] [Related]  

  • 45. beta-Adrenergic receptors stimulated peroxidase secretion from rat lacrimal gland.
    Friedman ZY; Lowe M; Selinger Z
    Biochim Biophys Acta; 1981 Jun; 675(1):40-5. PubMed ID: 6167288
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cystic fibrosis fibroblasts respond normally to isoproterenol.
    Kurz JB; Perkins JP
    Pediatr Res; 1981 Oct; 15(10):1328-33. PubMed ID: 6170925
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparison of the secretory processes in the parotid and sublingual glands of the mouse. 1. Regulation of the secretory processes.
    Vreugdenhil AP; Roukema PA
    Biochim Biophys Acta; 1975 Nov; 413(1):79-94. PubMed ID: 172149
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dopamine-induced amylase secretion from guinea-pig submandibular gland.
    Bloom GD; Carlsöö B; Danielsson A
    Br J Pharmacol; 1975 Aug; 54(4):523-8. PubMed ID: 169937
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of substance P on exocrine secretion by rat submandibular gland cells.
    Fleming N; Bilan PT; Graham KW
    J Dent Res; 1984 Aug; 63(8):1022-7. PubMed ID: 6205029
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electrolyte and protein secretion by the perfused rabbit mandibular gland stimulated with acetylcholine or catecholamines.
    Case RM; Conigrave AD; Novak I; Young JA
    J Physiol; 1980 Mar; 300():467-87. PubMed ID: 7381794
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A simplified cyclic adenosine monophosphate-mediated sweat rate test for quantitative measure of cystic fibrosis transmembrane regulator (CFTR) function.
    Callen A; Diener-West M; Zeitlin PL; Rubenstein RC
    J Pediatr; 2000 Dec; 137(6):849-55. PubMed ID: 11113843
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Role of protein phosphorylation in regulating rat submandibular mucin secretion.
    Quissell DO; Deisher LM; Barzen KA
    Am J Physiol; 1983 Jul; 245(1):G44-53. PubMed ID: 6307063
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Relevance of second messengers in cystic fibrosis.
    Roscher A; Wiesmann UN; Hadorn B
    Monogr Paediatr; 1979; 10():77-83. PubMed ID: 37441
    [No Abstract]   [Full Text] [Related]  

  • 54. Adrenergic beta receptors mediating submandibular salivary gland hypertrophy in the rat.
    Brenner GM; Wulf RG
    J Pharmacol Exp Ther; 1981 Sep; 218(3):608-12. PubMed ID: 6115050
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of chronic reserpine administration on beta adrenergic receptors, adenylate cyclase and phosphodiesterase of the rat submandibular gland.
    Bylund DB; Forte LR; Morgan DW; Martinez JR
    J Pharmacol Exp Ther; 1981 Jul; 218(1):134-41. PubMed ID: 6113277
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Striatal dopamine release in vitro: a beta-adrenoceptor-regulated response not mediated through cyclic AMP.
    Reisine T; Chesselet MF; Glowinski J
    J Neurochem; 1982 Oct; 39(4):976-81. PubMed ID: 6181195
    [TBL] [Abstract][Full Text] [Related]  

  • 57. beta-Adrenoceptor alterations coupled with secretory response in rat parotid tissue.
    Hata F; Ishida H; Kagawa K; Kondo E; Kondo S; Noguchi Y
    J Physiol; 1983 Aug; 341():185-96. PubMed ID: 6194286
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Adrenergic receptors and secretory responses of the rat submandibular salivary gland after periodic incisor reduction.
    Chiarenza AP; Elverdin JC; Gamba CA; Luchelli MA
    Arch Oral Biol; 1998 Apr; 43(4):261-7. PubMed ID: 9839701
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Impaired beta adrenergic receptor binding and function in cystic fibrosis neutrophils.
    Galant SP; Norton L; Herbst J; Wood C
    J Clin Invest; 1981 Jul; 68(1):253-8. PubMed ID: 6265498
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Iso stimulation of GH and cAMP: comparison of beta-adrenergic- to GRF-stimulated GH release and cAMP accumulation in monolayer cultures of anterior pituitary cells in vitro.
    Gabriel SM; Milbury CM; Alexander SM; Nathanson JA; Martin JB
    Neuroendocrinology; 1989 Aug; 50(2):170-6. PubMed ID: 2476679
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.