These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 2412755)

  • 1. Rhodopsin phosphorylation inhibited by adenosine in frog rods: lack of effects on excitation.
    Donner K; Hemilä S
    Comp Biochem Physiol A Comp Physiol; 1985; 81(2):431-9. PubMed ID: 2412755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Ca2+ on the decay of rhodopsin photoproducts and photoreceptor adaptation in the isolated bullfrog retina.
    Hanawa I; Ando H; Matsuura T
    Jpn J Physiol; 1985; 35(3):495-502. PubMed ID: 3877200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction between photoexcited rhodopsin and peripheral enzymes in frog retinal rods. Influence on the postmetarhodopsin II decay and phosphorylation rate of rhodopsin.
    Pfister C; Kühn H; Chabre M
    Eur J Biochem; 1983 Nov; 136(3):489-99. PubMed ID: 6315431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of light-activated phosphorylation in frog photoreceptor membranes.
    Miller JA; Paulsen R; Bownds MD
    Biochemistry; 1977 Jun; 16(12):2633-9. PubMed ID: 302121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transient dichroism in photoreceptor membranes indicates that stable oligomers of rhodopsin do not form during excitation.
    Downer NW; Cone RA
    Biophys J; 1985 Mar; 47(3):277-84. PubMed ID: 3919778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoreceptor sensitivity as a function of rhodopsin content in the isolated bullfrog retina.
    Toba Y; Hanawa I
    Jpn J Physiol; 1985; 35(3):483-94. PubMed ID: 2414499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of rhodopsin and "artificial" visual pigments in electrophysiologically active photoreceptors.
    Pepperberg DR
    Methods Enzymol; 1982; 81():452-9. PubMed ID: 7098892
    [No Abstract]   [Full Text] [Related]  

  • 8. Rhodopsin photoproducts and the visual response of vertebrate rods.
    Pepperberg DR; Clack JW
    Vision Res; 1984; 24(11):1481-6. PubMed ID: 6533982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of glycosylation inhibitors on the frog retina.
    Chambers JP; Tsin AT; Raymond NY; Aldape FG; Rodriguez KA
    Brain Res Bull; 1986 Aug; 17(2):259-63. PubMed ID: 3094838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Rhodopsin regeneration: role of interaction between the photoreceptors and pigment epithelium cells].
    Ostapenko IA
    Tsitologiia; 1978 Jun; 20(6):665-9. PubMed ID: 308718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation, conversion, and utilization of isorhodopsin, rhodopsin, and porphyropsin by rod photoreceptors in the Xenopus retina.
    Witkovsky P; Engbretson GA; Ripps H
    J Gen Physiol; 1978 Dec; 72(6):821-36. PubMed ID: 731199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light activation of one rhodopsin molecule causes the phosphorylation of hundreds of others. A reaction observed in electropermeabilized frog rod outer segments exposed to dim illumination.
    Binder BM; Biernbaum MS; Bownds MD
    J Biol Chem; 1990 Sep; 265(25):15333-40. PubMed ID: 2394724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light-stimulated phosphorylation of rhodopsin in the retina: the presence of a protein kinase that is specific for photobleached rhodopsin.
    Weller M; Virmaux N; Mandel P
    Proc Natl Acad Sci U S A; 1975 Jan; 72(1):381-5. PubMed ID: 164024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorylation and dephosphorylation of frog rod outer segment membranes as part of the visual process.
    Miller JA; Paulsen R
    J Biol Chem; 1975 Jun; 250(12):4427-32. PubMed ID: 1079805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorylation of rhodopsin as a possible mechanism of adaptation.
    Kühn H; McDowell JH; Leser KH; Bader S
    Biophys Struct Mech; 1977 Jun; 3(2):175-80. PubMed ID: 196697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of turn-offs of frog rod phototransduction cascade.
    Astakhova LA; Firsov ML; Govardovskii VI
    J Gen Physiol; 2008 Nov; 132(5):587-604. PubMed ID: 18955597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light-regulated biochemical events in invertebrate photoreceptors. 2. Light-regulated phosphorylation of rhodopsin and phosphoinositides in squid photoreceptor membranes.
    Vandenberg CA; Montal M
    Biochemistry; 1984 May; 23(11):2347-52. PubMed ID: 6089868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The formation of metarhodospin380 in the retinal rods of the frog.
    Baumann C
    J Physiol; 1976 Jul; 259(2):357-66. PubMed ID: 1085360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The rate of rhodopsin phosphorylation in isolated rentinas of frog and cattle.
    Kühn H; Bader S
    Biochim Biophys Acta; 1976 Mar; 428(1):13-8. PubMed ID: 1083249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light-induced binding of 48-kDa protein to photoreceptor membranes is highly enhanced by phosphorylation of rhodopsin.
    Kühn H; Hall SW; Wilden U
    FEBS Lett; 1984 Oct; 176(2):473-8. PubMed ID: 6436059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.