BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 24127724)

  • 21. Prolyl hydroxylation in elastin is not random.
    Schmelzer CE; Nagel MB; Dziomba S; Merkher Y; Sivan SS; Heinz A
    Biochim Biophys Acta; 2016 Oct; 1860(10):2169-77. PubMed ID: 27180175
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The aberrance of the 4S diastereomer of 4-hydroxyproline.
    Shoulders MD; Kotch FW; Choudhary A; Guzei IA; Raines RT
    J Am Chem Soc; 2010 Aug; 132(31):10857-65. PubMed ID: 20681719
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exon 26-coded polypeptide: an isolated hydrophobic domain of human tropoelastin able to self-assemble in vitro.
    Pepe A; Flamia R; Guerra D; Quaglino D; Bochicchio B; Pasquali Ronchetti I; Tamburro AM
    Matrix Biol; 2008 Jun; 27(5):441-50. PubMed ID: 18450438
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Engineering aqueous fiber assembly into silk-elastin-like protein polymers.
    Zeng L; Jiang L; Teng W; Cappello J; Zohar Y; Wu X
    Macromol Rapid Commun; 2014 Jul; 35(14):1273-9. PubMed ID: 24798978
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dissection of human tropoelastin: supramolecular organization of polypeptide sequences coded by particular exons.
    Pepe A; Guerra D; Bochicchio B; Quaglino D; Gheduzzi D; Pasquali Ronchetti I; Tamburro AM
    Matrix Biol; 2005 Apr; 24(2):96-109. PubMed ID: 15890261
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural characterization of human elastin derived peptides containing the GXXP sequence.
    Moroy G; Alix AJ; Héry-Huynh S
    Biopolymers; 2005 Jul; 78(4):206-20. PubMed ID: 15812830
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of hydroxyprolines in the in vitro oxidative folding and biological activity of conotoxins.
    Lopez-Vera E; Walewska A; Skalicky JJ; Olivera BM; Bulaj G
    Biochemistry; 2008 Feb; 47(6):1741-51. PubMed ID: 18189422
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A comprehensive map of human elastin cross-linking during elastogenesis.
    Hedtke T; Schräder CU; Heinz A; Hoehenwarter W; Brinckmann J; Groth T; Schmelzer CEH
    FEBS J; 2019 Sep; 286(18):3594-3610. PubMed ID: 31102572
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prolyl 4-hydroxylase.
    Gorres KL; Raines RT
    Crit Rev Biochem Mol Biol; 2010 Apr; 45(2):106-24. PubMed ID: 20199358
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthetic human elastin microfibers: stable cross-linked tropoelastin and cell interactive constructs for tissue engineering applications.
    Nivison-Smith L; Rnjak J; Weiss AS
    Acta Biomater; 2010 Feb; 6(2):354-9. PubMed ID: 19671457
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Imino acids and collagen triple helix stability: characterization of collagen-like polypeptides containing Hyp-Hyp-Gly sequence repeats.
    Berisio R; Granata V; Vitagliano L; Zagari A
    J Am Chem Soc; 2004 Sep; 126(37):11402-3. PubMed ID: 15366862
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure and modeling studies of the carboxy-terminus region of human tropoelastin.
    Floquet N; Pepe A; Dauchez M; Bochicchio B; Tamburro AM; Alix AJ
    Matrix Biol; 2005 Jun; 24(4):271-82. PubMed ID: 15961300
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Self-assembly of elastin-mimetic double hydrophobic polypeptides.
    Le DH; Hanamura R; Pham DH; Kato M; Tirrell DA; Okubo T; Sugawara-Narutaki A
    Biomacromolecules; 2013 Apr; 14(4):1028-34. PubMed ID: 23495825
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two crystal modifications of (Pro-Pro-Gly)4-Hyp-Hyp-Gly-(Pro-Pro-Gly)4 reveal the puckering preference of Hyp(X) in the Hyp(X):Hyp(Y) and Hyp(X):Pro(Y) stacking pairs in collagen helices.
    Okuyama K; Morimoto T; Narita H; Kawaguchi T; Mizuno K; Bächinger HP; Wu G; Noguchi K
    Acta Crystallogr D Biol Crystallogr; 2010 Jan; 66(Pt 1):88-96. PubMed ID: 20057053
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigation of self-assembling proline- and glycine-rich recombinant proteins and peptides inspired by proteins from a symbiotic fungus using atomic force microscopy and circular dichroism spectroscopy.
    Creasey RG; Voelcker NH; Schultz CJ
    Biochim Biophys Acta; 2012 May; 1824(5):711-22. PubMed ID: 22425601
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Amyloid-like fibrils in elastin-related polypeptides: structural characterization and elastic properties.
    del Mercato LL; Maruccio G; Pompa PP; Bochicchio B; Tamburro AM; Cingolani R; Rinaldi R
    Biomacromolecules; 2008 Mar; 9(3):796-803. PubMed ID: 18257556
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of glycosylated (2S,4R)-hydroxyproline on the stability and assembly of collagen triple helices.
    Huang PW; Chang JM; Horng JC
    Amino Acids; 2016 Dec; 48(12):2765-2772. PubMed ID: 27522650
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of collagen-like heterotrimers: implications for triple-helix stability.
    Berisio R; Granata V; Vitagliano L; Zagari A
    Biopolymers; 2004 Apr; 73(6):682-8. PubMed ID: 15048771
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The triple helical structure and stability of collagen model peptide with 4(S)-hydroxyprolyl-Pro-Gly units.
    Motooka D; Kawahara K; Nakamura S; Doi M; Nishi Y; Nishiuchi Y; Kang YK; Nakazawa T; Uchiyama S; Yoshida T; Ohkubo T; Kobayashi Y
    Biopolymers; 2012; 98(2):111-21. PubMed ID: 22020801
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The folding mechanism of collagen-like model peptides explored through detailed molecular simulations.
    Stultz CM
    Protein Sci; 2006 Sep; 15(9):2166-77. PubMed ID: 16943446
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.