These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 24127745)

  • 41. The In-Situ Synthesis of a 3D SnS/N-Doped Graphene Composite with Enhanced Electrochemical Performance as a Low-Cost Anode Material in Sodium Ion Batteries.
    Song NJ; Ma C
    Materials (Basel); 2019 Jun; 12(12):. PubMed ID: 31242561
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A novel one-step strategy toward ZnMn2O4/N-doped graphene nanosheets with robust chemical interaction for superior lithium storage.
    Wang D; Zhou W; Zhang Y; Wang Y; Wu G; Yu K; Wen G
    Nanotechnology; 2016 Jan; 27(4):045405. PubMed ID: 26658114
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries.
    Wang H; Cui LF; Yang Y; Sanchez Casalongue H; Robinson JT; Liang Y; Cui Y; Dai H
    J Am Chem Soc; 2010 Oct; 132(40):13978-80. PubMed ID: 20853844
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In Situ Activation of Nitrogen-Doped Graphene Anchored on Graphite Foam for a High-Capacity Anode.
    Ji J; Liu J; Lai L; Zhao X; Zhen Y; Lin J; Zhu Y; Ji H; Zhang LL; Ruoff RS
    ACS Nano; 2015 Aug; 9(8):8609-16. PubMed ID: 26258909
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dopamine as the coating agent and carbon precursor for the fabrication of N-doped carbon coated Fe3O4 composites as superior lithium ion anodes.
    Lei C; Han F; Li D; Li WC; Sun Q; Zhang XQ; Lu AH
    Nanoscale; 2013 Feb; 5(3):1168-75. PubMed ID: 23292140
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A hierarchical hybrid design for high performance tin based Li-ion battery anodes.
    Song X
    Nanotechnology; 2013 May; 24(20):205401. PubMed ID: 23598519
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The mechanistic exploration of porous activated graphene sheets-anchored SnO2 nanocrystals for application in high-performance Li-ion battery anodes.
    Yang Y; Ji X; Lu F; Chen Q; Banks CE
    Phys Chem Chem Phys; 2013 Sep; 15(36):15098-105. PubMed ID: 23925441
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ultra-small Fe3O4 nanoparticle decorated graphene nanosheets with superior cyclic performance and rate capability.
    Chen Y; Song B; Lu L; Xue J
    Nanoscale; 2013 Aug; 5(15):6797-803. PubMed ID: 23765405
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Core-shell Si-N-doped C assembled via an oxidative template for lithium-ion anodes.
    Tu J; Hu L; Jiao S; Hou J; Zhu H
    Phys Chem Chem Phys; 2013 Nov; 15(42):18549-54. PubMed ID: 24076966
    [TBL] [Abstract][Full Text] [Related]  

  • 50. 3D structure through planting core-shell Si@TiN into an amorphous carbon slag: improved capacity of lithium-ion anodes.
    Tu J; Zhao Z; Hu L; Jiao S; Hou J; Zhu H
    Phys Chem Chem Phys; 2013 Jul; 15(25):10472-6. PubMed ID: 23685911
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Two-dimensional carbon-coated graphene/metal oxide hybrids for enhanced lithium storage.
    Su Y; Li S; Wu D; Zhang F; Liang H; Gao P; Cheng C; Feng X
    ACS Nano; 2012 Sep; 6(9):8349-56. PubMed ID: 22931096
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Facile preparation of a cobalt hybrid/graphene nanocomposite by in situ chemical reduction: high lithium storage capacity and highly efficient removal of Congo red.
    Wang L; Li J; Mao C; Zhang L; Zhao L; Jiang Q
    Dalton Trans; 2013 Jun; 42(22):8070-7. PubMed ID: 23575798
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Interfacial engineering of 0D/2D SnS
    Gao D; Wang Y; Liu Y; Sun H; Wu M; Zhang H
    J Colloid Interface Sci; 2019 Mar; 538():116-124. PubMed ID: 30502532
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Incorporation of heterostructured Sn/SnO nanoparticles in crumpled nitrogen-doped graphene nanosheets for application as anodes in lithium-ion batteries.
    Du FH; Liu YS; Long J; Zhu QC; Wang KX; Wei X; Chen JS
    Chem Commun (Camb); 2014 Sep; 50(69):9961-4. PubMed ID: 25034037
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cobalt carbonate/ and cobalt oxide/graphene aerogel composite anodes for high performance Li-ion batteries.
    Garakani MA; Abouali S; Zhang B; Takagi CA; Xu ZL; Huang JQ; Huang J; Kim JK
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):18971-80. PubMed ID: 25317550
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Solvothermal-induced 3D macroscopic SnO2/nitrogen-doped graphene aerogels for high capacity and long-life lithium storage.
    Wang R; Xu C; Sun J; Gao L; Yao H
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3427-36. PubMed ID: 24555873
    [TBL] [Abstract][Full Text] [Related]  

  • 57. 3D nitrogen-doped graphene foam with encapsulated germanium/nitrogen-doped graphene yolk-shell nanoarchitecture for high-performance flexible Li-ion battery.
    Mo R; Rooney D; Sun K; Yang HY
    Nat Commun; 2017 Jan; 8():13949. PubMed ID: 28051065
    [TBL] [Abstract][Full Text] [Related]  

  • 58. One-pot synthesis of hematite@graphene core@shell nanostructures for superior lithium storage.
    Chen D; Quan H; Liang J; Guo L
    Nanoscale; 2013 Oct; 5(20):9684-9. PubMed ID: 23999932
    [TBL] [Abstract][Full Text] [Related]  

  • 59. 3D heterostructured architectures of Co3O4 nanoparticles deposited on porous graphene surfaces for high performance of lithium ion batteries.
    Choi BG; Chang SJ; Lee YB; Bae JS; Kim HJ; Huh YS
    Nanoscale; 2012 Sep; 4(19):5924-30. PubMed ID: 22899185
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Self-assembled Fe₂O₃/graphene aerogel with high lithium storage performance.
    Xiao L; Wu D; Han S; Huang Y; Li S; He M; Zhang F; Feng X
    ACS Appl Mater Interfaces; 2013 May; 5(9):3764-9. PubMed ID: 23551107
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.