These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 24127904)

  • 1. Microneedle-mediated intrascleral delivery of in situ forming thermoresponsive implants for sustained ocular drug delivery.
    Thakur RR; Fallows SJ; McMillan HL; Donnelly RF; Jones DS
    J Pharm Pharmacol; 2014 Apr; 66(4):584-95. PubMed ID: 24127904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of microneedles-assisted in situ depot forming poloxamer gels for sustained transdermal drug delivery.
    Khan S; Minhas MU; Tekko IA; Donnelly RF; Thakur RRS
    Drug Deliv Transl Res; 2019 Aug; 9(4):764-782. PubMed ID: 30675693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapidly dissolving polymeric microneedles for minimally invasive intraocular drug delivery.
    Thakur RR; Tekko IA; Al-Shammari F; Ali AA; McCarthy H; Donnelly RF
    Drug Deliv Transl Res; 2016 Dec; 6(6):800-815. PubMed ID: 27709355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microneedle scleral patch for minimally invasive delivery of triamcinolone to the posterior segment of eye.
    Roy G; Garg P; Venuganti VVK
    Int J Pharm; 2022 Jan; 612():121305. PubMed ID: 34800618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coated microneedles for drug delivery to the eye.
    Jiang J; Gill HS; Ghate D; McCarey BE; Patel SR; Edelhauser HF; Prausnitz MR
    Invest Ophthalmol Vis Sci; 2007 Sep; 48(9):4038-43. PubMed ID: 17724185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Depthwise-controlled scleral insertion of microneedles for drug delivery to the back of the eye.
    Park SH; Jo DH; Cho CS; Lee K; Kim JH; Ryu S; Joo C; Kim JH; Ryu W
    Eur J Pharm Biopharm; 2018 Dec; 133():31-41. PubMed ID: 30267835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suprachoroidal drug delivery to the back of the eye using hollow microneedles.
    Patel SR; Lin AS; Edelhauser HF; Prausnitz MR
    Pharm Res; 2011 Jan; 28(1):166-76. PubMed ID: 20857178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing and sustaining the topical ocular delivery of fluconazole using chitosan solution and poloxamer/chitosan in situ forming gel.
    Gratieri T; Gelfuso GM; de Freitas O; Rocha EM; Lopez RF
    Eur J Pharm Biopharm; 2011 Oct; 79(2):320-7. PubMed ID: 21641994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of lung-delivered in-situ forming controlled release formulations.
    Dalla-Bona AC; Stoisiek K; Oesterheld N; Schmehl T; Gessler T; Seeger W; Beck-Broichsitter M
    J Pharm Pharmacol; 2015 Oct; 67(10):1349-54. PubMed ID: 25920623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel in situ forming hydrogel microneedles for transdermal drug delivery.
    Sivaraman A; Banga AK
    Drug Deliv Transl Res; 2017 Feb; 7(1):16-26. PubMed ID: 27562294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formulation and development of ophthalmic in situ gel for the treatment ocular inflammation and infection using application of quality by design concept.
    Patel N; Thakkar V; Metalia V; Baldaniya L; Gandhi T; Gohel M
    Drug Dev Ind Pharm; 2016 Sep; 42(9):1406-23. PubMed ID: 26716613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modified thermoresponsive Poloxamer 407 and chitosan sol-gels as potential sustained-release vaccine delivery systems.
    Kojarunchitt T; Baldursdottir S; Dong YD; Boyd BJ; Rades T; Hook S
    Eur J Pharm Biopharm; 2015 Jan; 89():74-81. PubMed ID: 25481034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formulation of Ocular In Situ Gels with Lithuanian Royal Jelly and Their Biopharmaceutical Evaluation In Vitro.
    Perminaite K; Marksa M; Stančiauskaitė M; Juknius T; Grigonis A; Ramanauskiene K
    Molecules; 2021 Jun; 26(12):. PubMed ID: 34200887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intrascleral drug delivery to the eye using hollow microneedles.
    Jiang J; Moore JS; Edelhauser HF; Prausnitz MR
    Pharm Res; 2009 Feb; 26(2):395-403. PubMed ID: 18979189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-acting nanoparticle-loaded bilayer microneedles for protein delivery to the posterior segment of the eye.
    Wu Y; Vora LK; Wang Y; Adrianto MF; Tekko IA; Waite D; Donnelly RF; Thakur RRS
    Eur J Pharm Biopharm; 2021 Aug; 165():306-318. PubMed ID: 34048879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formulation, functional evaluation and ex vivo performance of thermoresponsive soluble gels - A platform for therapeutic delivery to mucosal sinus tissue.
    Pandey P; Cabot PJ; Wallwork B; Panizza BJ; Parekh HS
    Eur J Pharm Sci; 2017 Jan; 96():499-507. PubMed ID: 27771516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracorneal injection of a detachable hybrid microneedle for sustained drug delivery.
    Lee K; Song HB; Cho W; Kim JH; Kim JH; Ryu W
    Acta Biomater; 2018 Oct; 80():48-57. PubMed ID: 30267886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microneedles assisted controlled and improved transdermal delivery of high molecular drugs via
    Khan S; Minhas MU; Singh Thakur RR; Aqeel MT
    Drug Dev Ind Pharm; 2022 Jun; 48(6):265-278. PubMed ID: 35899871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo, in situ imaging of microneedle insertion into the skin of human volunteers using optical coherence tomography.
    Coulman SA; Birchall JC; Alex A; Pearton M; Hofer B; O'Mahony C; Drexler W; Považay B
    Pharm Res; 2011 Jan; 28(1):66-81. PubMed ID: 20464461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro and in vivo evaluation of an in situ gel forming system for the delivery of PEGylated octreotide.
    Erfani Jabarian L; Rouini MR; Atyabi F; Foroumadi A; Nassiri SM; Dinarvand R
    Eur J Pharm Sci; 2013 Jan; 48(1-2):87-96. PubMed ID: 23131800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.