These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 24128059)
1. A logistic normal multinomial regression model for microbiome compositional data analysis. Xia F; Chen J; Fung WK; Li H Biometrics; 2013 Dec; 69(4):1053-63. PubMed ID: 24128059 [TBL] [Abstract][Full Text] [Related]
2. An integrative Bayesian Dirichlet-multinomial regression model for the analysis of taxonomic abundances in microbiome data. Wadsworth WD; Argiento R; Guindani M; Galloway-Pena J; Shelburne SA; Vannucci M BMC Bioinformatics; 2017 Feb; 18(1):94. PubMed ID: 28178947 [TBL] [Abstract][Full Text] [Related]
3. A Dirichlet-tree multinomial regression model for associating dietary nutrients with gut microorganisms. Wang T; Zhao H Biometrics; 2017 Sep; 73(3):792-801. PubMed ID: 28112797 [TBL] [Abstract][Full Text] [Related]
4. VARIABLE SELECTION FOR SPARSE DIRICHLET-MULTINOMIAL REGRESSION WITH AN APPLICATION TO MICROBIOME DATA ANALYSIS. Chen J; Li H Ann Appl Stat; 2013 Mar; 7(1):. PubMed ID: 24312162 [TBL] [Abstract][Full Text] [Related]
5. Prediction analysis for microbiome sequencing data. Wang T; Yang C; Zhao H Biometrics; 2019 Sep; 75(3):875-884. PubMed ID: 30994187 [TBL] [Abstract][Full Text] [Related]
6. Scalable estimation and regularization for the logistic normal multinomial model. Zhang J; Lin W Biometrics; 2019 Dec; 75(4):1098-1108. PubMed ID: 31009062 [TBL] [Abstract][Full Text] [Related]
7. Dirichlet-multinomial modelling outperforms alternatives for analysis of microbiome and other ecological count data. Harrison JG; Calder WJ; Shastry V; Buerkle CA Mol Ecol Resour; 2020 Mar; 20(2):481-497. PubMed ID: 31872949 [TBL] [Abstract][Full Text] [Related]
8. Zero-inflated generalized Dirichlet multinomial regression model for microbiome compositional data analysis. Tang ZZ; Chen G Biostatistics; 2019 Oct; 20(4):698-713. PubMed ID: 29939212 [TBL] [Abstract][Full Text] [Related]
9. Negative binomial mixed models for analyzing microbiome count data. Zhang X; Mallick H; Tang Z; Zhang L; Cui X; Benson AK; Yi N BMC Bioinformatics; 2017 Jan; 18(1):4. PubMed ID: 28049409 [TBL] [Abstract][Full Text] [Related]
10. A model for paired-multinomial data and its application to analysis of data on a taxonomic tree. Shi P; Li H Biometrics; 2017 Dec; 73(4):1266-1278. PubMed ID: 28369713 [TBL] [Abstract][Full Text] [Related]
11. A two-part mixed-effects model for analyzing longitudinal microbiome compositional data. Chen EZ; Li H Bioinformatics; 2016 Sep; 32(17):2611-7. PubMed ID: 27187200 [TBL] [Abstract][Full Text] [Related]
12. Variable selection in semiparametric cure models based on penalized likelihood, with application to breast cancer clinical trials. Liu X; Peng Y; Tu D; Liang H Stat Med; 2012 Oct; 31(24):2882-91. PubMed ID: 22733695 [TBL] [Abstract][Full Text] [Related]
13. Generalized linear models with linear constraints for microbiome compositional data. Lu J; Shi P; Li H Biometrics; 2019 Mar; 75(1):235-244. PubMed ID: 30039859 [TBL] [Abstract][Full Text] [Related]
14. A Bayesian approach to a logistic regression model with incomplete information. Choi T; Schervish MJ; Schmitt KA; Small MJ Biometrics; 2008 Jun; 64(2):424-30. PubMed ID: 17764482 [TBL] [Abstract][Full Text] [Related]
15. Predictive analysis methods for human microbiome data with application to Parkinson's disease. Dong M; Li L; Chen M; Kusalik A; Xu W PLoS One; 2020; 15(8):e0237779. PubMed ID: 32834004 [TBL] [Abstract][Full Text] [Related]
16. Meta'omic analytic techniques for studying the intestinal microbiome. Morgan XC; Huttenhower C Gastroenterology; 2014 May; 146(6):1437-1448.e1. PubMed ID: 24486053 [TBL] [Abstract][Full Text] [Related]
17. Zero-Inflated gaussian mixed models for analyzing longitudinal microbiome data. Zhang X; Guo B; Yi N PLoS One; 2020; 15(11):e0242073. PubMed ID: 33166356 [TBL] [Abstract][Full Text] [Related]
18. A Zero-Inflated Latent Dirichlet Allocation Model for Microbiome Studies. Deek RA; Li H Front Genet; 2020; 11():602594. PubMed ID: 33552122 [TBL] [Abstract][Full Text] [Related]
19. Model building in nonproportional hazard regression. Rodríguez-Girondo M; Kneib T; Cadarso-Suárez C; Abu-Assi E Stat Med; 2013 Dec; 32(30):5301-14. PubMed ID: 24038401 [TBL] [Abstract][Full Text] [Related]
20. A mixed mover-stayer model for spatiotemporal two-state processes. Nathoo F; Dean CB Biometrics; 2007 Sep; 63(3):881-91. PubMed ID: 17825018 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]