These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
791 related articles for article (PubMed ID: 24128175)
1. Competition between Förster resonance energy transfer and electron transfer in stoichiometrically assembled semiconductor quantum dot-fullerene conjugates. Stewart MH; Huston AL; Scott AM; Oh E; Algar WR; Deschamps JR; Susumu K; Jain V; Prasuhn DE; Blanco-Canosa J; Dawson PE; Medintz IL ACS Nano; 2013 Oct; 7(10):9489-505. PubMed ID: 24128175 [TBL] [Abstract][Full Text] [Related]
2. Complex Förster energy transfer interactions between semiconductor quantum dots and a redox-active osmium assembly. Stewart MH; Huston AL; Scott AM; Efros AL; Melinger JS; Gemmill KB; Trammell SA; Blanco-Canosa JB; Dawson PE; Medintz IL ACS Nano; 2012 Jun; 6(6):5330-47. PubMed ID: 22671940 [TBL] [Abstract][Full Text] [Related]
3. Poisson-distributed electron-transfer dynamics from single quantum dots to C60 molecules. Song N; Zhu H; Jin S; Zhan W; Lian T ACS Nano; 2011 Jan; 5(1):613-21. PubMed ID: 21190376 [TBL] [Abstract][Full Text] [Related]
5. An enzymatically-sensitized sequential and concentric energy transfer relay self-assembled around semiconductor quantum dots. Samanta A; Walper SA; Susumu K; Dwyer CL; Medintz IL Nanoscale; 2015 May; 7(17):7603-14. PubMed ID: 25804284 [TBL] [Abstract][Full Text] [Related]
6. CdSe quantum dot-fullerene hybrid nanocomposite for solar energy conversion: electron transfer and photoelectrochemistry. Bang JH; Kamat PV ACS Nano; 2011 Dec; 5(12):9421-7. PubMed ID: 22107780 [TBL] [Abstract][Full Text] [Related]
7. Quantum Dot-Peptide-Fullerene Bioconjugates for Visualization of in Vitro and in Vivo Cellular Membrane Potential. Nag OK; Stewart MH; Deschamps JR; Susumu K; Oh E; Tsytsarev V; Tang Q; Efros AL; Vaxenburg R; Black BJ; Chen Y; O'Shaughnessy TJ; North SH; Field LD; Dawson PE; Pancrazio JJ; Medintz IL; Chen Y; Erzurumlu RS; Huston AL; Delehanty JB ACS Nano; 2017 Jun; 11(6):5598-5613. PubMed ID: 28514167 [TBL] [Abstract][Full Text] [Related]
8. Quantum dots as simultaneous acceptors and donors in time-gated Förster resonance energy transfer relays: characterization and biosensing. Algar WR; Wegner D; Huston AL; Blanco-Canosa JB; Stewart MH; Armstrong A; Dawson PE; Hildebrandt N; Medintz IL J Am Chem Soc; 2012 Jan; 134(3):1876-91. PubMed ID: 22220737 [TBL] [Abstract][Full Text] [Related]
9. Assembly of a concentric Förster resonance energy transfer relay on a quantum dot scaffold: characterization and application to multiplexed protease sensing. Algar WR; Ancona MG; Malanoski AP; Susumu K; Medintz IL ACS Nano; 2012 Dec; 6(12):11044-58. PubMed ID: 23215458 [TBL] [Abstract][Full Text] [Related]
11. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. Clapp AR; Medintz IL; Mauro JM; Fisher BR; Bawendi MG; Mattoussi H J Am Chem Soc; 2004 Jan; 126(1):301-10. PubMed ID: 14709096 [TBL] [Abstract][Full Text] [Related]
12. Quenching of photoluminescence in conjugates of quantum dots and single-walled carbon nanotube. Biju V; Itoh T; Baba Y; Ishikawa M J Phys Chem B; 2006 Dec; 110(51):26068-74. PubMed ID: 17181259 [TBL] [Abstract][Full Text] [Related]
13. Self-assembled quantum dot-sensitized multivalent DNA photonic wires. Boeneman K; Prasuhn DE; Blanco-Canosa JB; Dawson PE; Melinger JS; Ancona M; Stewart MH; Susumu K; Huston A; Medintz IL J Am Chem Soc; 2010 Dec; 132(51):18177-90. PubMed ID: 21141858 [TBL] [Abstract][Full Text] [Related]
14. Quantum dot peptide biosensors for monitoring caspase 3 proteolysis and calcium ions. Prasuhn DE; Feltz A; Blanco-Canosa JB; Susumu K; Stewart MH; Mei BC; Yakovlev AV; Loukov C; Mallet JM; Oheim M; Dawson PE; Medintz IL ACS Nano; 2010 Sep; 4(9):5487-97. PubMed ID: 20822159 [TBL] [Abstract][Full Text] [Related]
15. Concurrent Modulation of Quantum Dot Photoluminescence Using a Combination of Charge Transfer and Förster Resonance Energy Transfer: Competitive Quenching and Multiplexed Biosensing Modality. Algar WR; Khachatrian A; Melinger JS; Huston AL; Stewart MH; Susumu K; Blanco-Canosa JB; Oh E; Dawson PE; Medintz IL J Am Chem Soc; 2017 Jan; 139(1):363-372. PubMed ID: 28009161 [TBL] [Abstract][Full Text] [Related]
16. Quantum dot-based multidonor concentric FRET system and its application to biosensing using an excitation ratio. Kim H; Ng CY; Algar WR Langmuir; 2014 May; 30(19):5676-85. PubMed ID: 24810095 [TBL] [Abstract][Full Text] [Related]
17. Multiway study of hybridization in nanoscale semiconductor labeled DNA based on fluorescence resonance energy transfer. Gholami S; Kompany-Zareh M Phys Chem Chem Phys; 2013 Sep; 15(34):14405-13. PubMed ID: 23884154 [TBL] [Abstract][Full Text] [Related]
18. Monitoring botulinum neurotoxin a activity with peptide-functionalized quantum dot resonance energy transfer sensors. Sapsford KE; Granek J; Deschamps JR; Boeneman K; Blanco-Canosa JB; Dawson PE; Susumu K; Stewart MH; Medintz IL ACS Nano; 2011 Apr; 5(4):2687-99. PubMed ID: 21361387 [TBL] [Abstract][Full Text] [Related]
19. Small-molecule ligands strongly affect the Förster resonance energy transfer between a quantum dot and a fluorescent protein. Zhang Y; Zhang H; Hollins J; Webb ME; Zhou D Phys Chem Chem Phys; 2011 Nov; 13(43):19427-36. PubMed ID: 21971088 [TBL] [Abstract][Full Text] [Related]
20. Quantum dot photoluminescence quenching by Cr(III) complexes. Photosensitized reactions and evidence for a FRET mechanism. Burks PT; Ostrowski AD; Mikhailovsky AA; Chan EM; Wagenknecht PS; Ford PC J Am Chem Soc; 2012 Aug; 134(32):13266-75. PubMed ID: 22808899 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]