These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 24128183)

  • 1. G/U and certain wobble position mismatches as possible main causes of amino acid misincorporations.
    Zhang Z; Shah B; Bondarenko PV
    Biochemistry; 2013 Nov; 52(45):8165-76. PubMed ID: 24128183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. tRNA structure and ribosomal function. I. tRNA nucleotide 27-43 mutations enhance first position wobble.
    Schultz DW; Yarus M
    J Mol Biol; 1994 Feb; 235(5):1381-94. PubMed ID: 8107080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. tRNA's wobble decoding of the genome: 40 years of modification.
    Agris PF; Vendeix FA; Graham WD
    J Mol Biol; 2007 Feb; 366(1):1-13. PubMed ID: 17187822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anticodon domain modifications contribute order to tRNA for ribosome-mediated codon binding.
    Vendeix FA; Dziergowska A; Gustilo EM; Graham WD; Sproat B; Malkiewicz A; Agris PF
    Biochemistry; 2008 Jun; 47(23):6117-29. PubMed ID: 18473483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Do anticodons of misacylated tRNAs preferentially mismatch codons coding for the misloaded amino acid?
    Seligmann H
    BMC Mol Biol; 2010 May; 11():41. PubMed ID: 20509917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Error compensation of tRNA misacylation by codon-anticodon mismatch prevents translational amino acid misinsertion.
    Seligmann H
    Comput Biol Chem; 2011 Apr; 35(2):81-95. PubMed ID: 21470914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Codon recognition by tRNA molecules with a modified or unmodified uridine at the first position of the anticodon.
    Okumura S; Takai K; Yokoyama S; Takaku H
    Nucleic Acids Symp Ser; 1995; (34):203-4. PubMed ID: 8841623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Four-base codon-mediated saturation mutagenesis in a cell-free translation system.
    Watanabe T; Muranaka N; Hohsaka T
    J Biosci Bioeng; 2008 Mar; 105(3):211-5. PubMed ID: 18397770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transfer RNA recognition by the Escherichia coli delta2-isopentenyl-pyrophosphate:tRNA delta2-isopentenyl transferase: dependence on the anticodon arm structure.
    Motorin Y; Bec G; Tewari R; Grosjean H
    RNA; 1997 Jul; 3(7):721-33. PubMed ID: 9214656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro selection of tRNAs for efficient four-base decoding to incorporate non-natural amino acids into proteins in an Escherichia coli cell-free translation system.
    Taira H; Hohsaka T; Sisido M
    Nucleic Acids Res; 2006; 34(5):1653-62. PubMed ID: 16549877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical and structural studies of A-to-I editing by tRNA:A34 deaminases at the wobble position of transfer RNA.
    Elias Y; Huang RH
    Biochemistry; 2005 Sep; 44(36):12057-65. PubMed ID: 16142903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quadruplet codons: implications for code expansion and the specification of translation step size.
    Moore B; Persson BC; Nelson CC; Gesteland RF; Atkins JF
    J Mol Biol; 2000 Apr; 298(2):195-209. PubMed ID: 10764591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. tRNA recognition by tRNA-guanine transglycosylase from Escherichia coli: the role of U33 in U-G-U sequence recognition.
    Nonekowski ST; Garcia GA
    RNA; 2001 Oct; 7(10):1432-41. PubMed ID: 11680848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Codon reading by tRNAAla with modified uridine in the wobble position.
    Kothe U; Rodnina MV
    Mol Cell; 2007 Jan; 25(1):167-74. PubMed ID: 17218280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Singly and bifurcated hydrogen-bonded base-pairs in tRNA anticodon hairpins and ribozymes.
    Auffinger P; Westhof E
    J Mol Biol; 1999 Sep; 292(3):467-83. PubMed ID: 10497015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of anticodon-codon interactions and modified bases on codon usage bias in bacteria.
    Ran W; Higgs PG
    Mol Biol Evol; 2010 Sep; 27(9):2129-40. PubMed ID: 20403966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Four-base codon/anticodon strategy and non-enzymatic aminoacylation for protein engineering with non-natural amino acids.
    Sisido M; Ninomiya K; Ohtsuki T; Hohsaka T
    Methods; 2005 Jul; 36(3):270-8. PubMed ID: 16076453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional compensation by particular nucleotide substitutions of a critical G*U wobble base-pair during aminoacylation of transfer RNA.
    McClain WH; Gabriel K; Bhattacharya S; Jou YY; Schneider J
    J Mol Biol; 1999 Mar; 286(4):1025-32. PubMed ID: 10047479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional interaction between release factor one and P-site peptidyl-tRNA on the ribosome.
    Zhang S; Rydén-Aulin M; Isaksson LA
    J Mol Biol; 1996 Aug; 261(2):98-107. PubMed ID: 8757279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of the suppression efficiency and amino acid identity of an artificial yeast amber isoleucine transfer RNA in Escherichia coli by a G-U pair in the anticodon stem.
    Büttcher V; Senger B; Schumacher S; Reinbolt J; Fasiolo F
    Biochem Biophys Res Commun; 1994 Apr; 200(1):370-7. PubMed ID: 8166708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.