These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Monodisperse Copper Chalcogenide Nanocrystals: Controllable Synthesis and the Pinning of Plasmonic Resonance Absorption. Wang F; Li Q; Lin L; Peng H; Liu Z; Xu D J Am Chem Soc; 2015 Sep; 137(37):12006-12. PubMed ID: 26317687 [TBL] [Abstract][Full Text] [Related]
25. Manipulating surface ligands of copper sulfide nanocrystals: synthesis, characterization, and application to organic solar cells. Li J; Jiu T; Tao GH; Wang G; Sun C; Li P; Fang J; He L J Colloid Interface Sci; 2014 Apr; 419():142-7. PubMed ID: 24491341 [TBL] [Abstract][Full Text] [Related]
26. Binary Cu Yarur Villanueva F; Green PB; Qiu C; Ullah SR; Buenviaje K; Howe JY; Majewski MB; Wilson MWB ACS Nano; 2021 Nov; 15(11):18085-18099. PubMed ID: 34705409 [TBL] [Abstract][Full Text] [Related]
27. Bandgap engineering of monodispersed Cu(2-x)S(y)Se(1-y) nanocrystals through chalcogen ratio and crystal structure. Wang JJ; Xue DJ; Guo YG; Hu JS; Wan LJ J Am Chem Soc; 2011 Nov; 133(46):18558-61. PubMed ID: 22023550 [TBL] [Abstract][Full Text] [Related]
28. Size Dependence of Doping by a Vacancy Formation Reaction in Copper Sulfide Nanocrystals. Elimelech O; Liu J; Plonka AM; Frenkel AI; Banin U Angew Chem Int Ed Engl; 2017 Aug; 56(35):10335-10340. PubMed ID: 28639731 [TBL] [Abstract][Full Text] [Related]
29. One-pot noninjection synthesis of Cu-doped Zn(x)Cd(1-x)S nanocrystals with emission color tunable over entire visible spectrum. Zhang W; Zhou X; Zhong X Inorg Chem; 2012 Mar; 51(6):3579-87. PubMed ID: 22364175 [TBL] [Abstract][Full Text] [Related]
30. Expanding the spectral tunability of plasmonic resonances in doped metal-oxide nanocrystals through cooperative cation-anion codoping. Ye X; Fei J; Diroll BT; Paik T; Murray CB J Am Chem Soc; 2014 Aug; 136(33):11680-6. PubMed ID: 25066599 [TBL] [Abstract][Full Text] [Related]
31. Binary and Ternary Colloidal Cu-Sn-Te Nanocrystals for Thermoelectric Thin Films. Yin D; Dun C; Zhang H; Fu Z; Gao X; Wang X; Singh DJ; Carroll DL; Liu Y; Swihart MT Small; 2021 Mar; 17(11):e2006729. PubMed ID: 33624942 [TBL] [Abstract][Full Text] [Related]
32. Synthesis, structural, and optical properties of stable ZnS:Cu,Cl nanocrystals. Corrado C; Jiang Y; Oba F; Kozina M; Bridges F; Zhang JZ J Phys Chem A; 2009 Apr; 113(16):3830-9. PubMed ID: 19170574 [TBL] [Abstract][Full Text] [Related]
34. Comparative study on the localized surface plasmon resonance of boron- and phosphorus-doped silicon nanocrystals. Zhou S; Pi X; Ni Z; Ding Y; Jiang Y; Jin C; Delerue C; Yang D; Nozaki T ACS Nano; 2015 Jan; 9(1):378-86. PubMed ID: 25551330 [TBL] [Abstract][Full Text] [Related]
35. Electrodeposition of nanowires of a high copper content thiourea precursor of copper sulfide. Sarma A; Dippel AC; Gutowski O; Etter M; Lippmann M; Seeck O; Manna G; Sanyal MK; Keller TF; Kulkarni S; Guha P; Satyam PV; Zimmermann MV RSC Adv; 2019 Oct; 9(55):31900-31910. PubMed ID: 35530788 [TBL] [Abstract][Full Text] [Related]
36. Hydrazine-promoted sequential cation exchange: a novel synthesis method for doped ternary semiconductor nanocrystals with tunable emission. Shao H; Wang C; Xu S; Jiang Y; Shao Y; Bo F; Wang Z; Cui Y Nanotechnology; 2014 Jan; 25(2):025603. PubMed ID: 24334495 [TBL] [Abstract][Full Text] [Related]
37. Aqueous copper sulfide clusters as intermediates during copper sulfide formation. Luther GW; Theberge SM; Rozan TF; Rickard D; Rowlands CC; Oldroyd A Environ Sci Technol; 2002 Feb; 36(3):394-402. PubMed ID: 11871554 [TBL] [Abstract][Full Text] [Related]
38. Sn cation valency dependence in cation exchange reactions involving Cu(2-x)Se nanocrystals. De Trizio L; Li H; Casu A; Genovese A; Sathya A; Messina GC; Manna L J Am Chem Soc; 2014 Nov; 136(46):16277-84. PubMed ID: 25340627 [TBL] [Abstract][Full Text] [Related]
39. Morphology Controlled Synthesis of Composition Related Plasmonic CuCdS Alloy Nanocrystals. Gao Y; Wang L; Tian G; Zang S; Wang H; Niu J; Li LS Front Chem; 2020; 8():628536. PubMed ID: 33425861 [TBL] [Abstract][Full Text] [Related]