BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 24128528)

  • 1. Evaluation of volatile metabolites as markers in Lycopersicon esculentum L. cultivars discrimination by multivariate analysis of headspace solid phase microextraction and mass spectrometry data.
    Figueira J; Câmara H; Pereira J; Câmara JS
    Food Chem; 2014 Feb; 145():653-63. PubMed ID: 24128528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic headspace solid-phase microextraction combined with one-dimensional gas chromatography-mass spectrometry as a powerful tool to differentiate banana cultivars based on their volatile metabolite profile.
    Pontes M; Pereira J; Câmara JS
    Food Chem; 2012 Oct; 134(4):2509-20. PubMed ID: 23442718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production system influences volatile biomarkers in tomato.
    Lee JHJ; Jayaprakasha GK; Rush CM; Crosby KM; Patil BS
    Metabolomics; 2018 Jul; 14(7):99. PubMed ID: 30830380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuronal network analyses reveal novel associations between volatile organic compounds and sensory properties of tomato fruits.
    Cortina PR; Santiago AN; Sance MM; Peralta IE; Carrari F; Asis R
    Metabolomics; 2018 Mar; 14(5):57. PubMed ID: 30830349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemometric discrimination of different tomato cultivars based on their volatile fingerprint in relation to lycopene and total phenolics content.
    Socaci SA; Socaciu C; Mureşan C; Fărcaş A; Tofană M; Vicaş S; Pintea A
    Phytochem Anal; 2014; 25(2):161-9. PubMed ID: 24259292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of volatile fingerprint by HS-SPME/GC-qMS and E-nose for the classification of cocoa bean shells using chemometrics.
    Barbosa-Pereira L; Rojo-Poveda O; Ferrocino I; Giordano M; Zeppa G
    Food Res Int; 2019 Sep; 123():684-696. PubMed ID: 31285018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geographical discrimination of Chinese winter wheat using volatile compound analysis by HS-SPME/GC-MS coupled with multivariate statistical analysis.
    Wadood SA; Boli G; Xiaowen Z; Raza A; Yimin W
    J Mass Spectrom; 2020 Jan; 55(1):e4453. PubMed ID: 31652388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discrimination and screening of volatile metabolites in atractylodis rhizoma from different varieties using headspace solid-phase microextraction-gas chromatography-mass spectrometry and headspace gas chromatography-ion mobility spectrometry, and ultra-fast gas chromatography electronic nose.
    Peng L; Wang X; He M; Sha X; Dou Z; Xiao L; Li W
    J Chromatogr A; 2024 Jun; 1725():464931. PubMed ID: 38703457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of volatile substances in apples from Rosaceae family by headspace solid-phase microextraction followed by GC-qMS.
    Ferreira L; Perestrelo R; Caldeira M; Câmara JS
    J Sep Sci; 2009 Jun; 32(11):1875-88. PubMed ID: 19425016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Volatile profiling of fruits of 17 mango cultivars by HS-SPME-GC/MS combined with principal component analysis.
    Shimizu K; Matsukawa T; Kanematsu R; Itoh K; Kanzaki S; Shigeoka S; Kajiyama S
    Biosci Biotechnol Biochem; 2021 Jul; 85(8):1789-1797. PubMed ID: 34057172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolomic studies of volatiles from tomatoes grown in net-house and open-field conditions.
    Lee JHJ; Jayaprakasha GK; Avila CA; Crosby KM; Patil BS
    Food Chem; 2019 Mar; 275():282-291. PubMed ID: 30724198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Volatile fingerprints and biomarkers of three representative kiwifruit cultivars obtained by headspace solid-phase microextraction gas chromatography mass spectrometry and chemometrics.
    Zhang CY; Zhang Q; Zhong CH; Guo MQ
    Food Chem; 2019 Jan; 271():211-215. PubMed ID: 30236669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Volatiles in Tomato Fruit Using Headspace Solid-Phase-Micro-Extraction (HS-SPME) Coupled with Gas Chromatography-Mass Spectrometry (GC-MS).
    Gupta P; Dhanya AJ; Sharma R; Sreelakshmi Y
    Methods Mol Biol; 2024; 2788():39-48. PubMed ID: 38656507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A powerful methodological approach combining headspace solid phase microextraction, mass spectrometry and multivariate analysis for profiling the volatile metabolomic pattern of beer starting raw materials.
    Gonçalves JL; Figueira JA; Rodrigues FP; Ornelas LP; Branco RN; Silva CL; Câmara JS
    Food Chem; 2014 Oct; 160():266-80. PubMed ID: 24799238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Screening of volatile decay markers of minced pork by headspace-solid phase microextraction-gas chromatography-mass spectrometry and chemometrics.
    Song X; Canellas E; Nerin C
    Food Chem; 2021 Apr; 342():128341. PubMed ID: 33077278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recognition of volatile compounds as markers in geographical discrimination of Spanish extra virgin olive oils by chemometric analysis of non-specific chromatography volatile profiles.
    Pizarro C; Rodríguez-Tecedor S; Pérez-del-Notario N; González-Sáiz JM
    J Chromatogr A; 2011 Jan; 1218(3):518-23. PubMed ID: 21163487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discrimination of Chinese vinegars based on headspace solid-phase microextraction-gas chromatography mass spectrometry of volatile compounds and multivariate analysis.
    Xiao Z; Dai S; Niu Y; Yu H; Zhu J; Tian H; Gu Y
    J Food Sci; 2011 Oct; 76(8):C1125-35. PubMed ID: 22417575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the volatile profile of 33 Pyrus ussuriensis cultivars by HS-SPME with GC-MS.
    Qin G; Tao S; Cao Y; Wu J; Zhang H; Huang W; Zhang S
    Food Chem; 2012 Oct; 134(4):2367-82. PubMed ID: 23442698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimisation of solid-phase microextraction combined with gas chromatography-mass spectrometry based methodology to establish the global volatile signature in pulp and skin of Vitis vinifera L. grape varieties.
    Perestrelo R; Barros AS; Rocha SM; Câmara JS
    Talanta; 2011 Sep; 85(3):1483-93. PubMed ID: 21807213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gas chromatography-mass spectrometry with solid-phase microextraction method for determination of methyl salicylate and other volatile compounds in leaves of Lycopersicon esculentum.
    Deng C; Zhang X; Zhu W; Qian J
    Anal Bioanal Chem; 2004 Jan; 378(2):518-22. PubMed ID: 14551667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.